Math 80220 Algebrai Number Theory Problem Set 2

Andrei Jorza
Due Wednesday, February 12

Definition 1. A Euclidean domain is a ring R with a Euclidean algorithm, i.e., there exists a "Euclidean" function $d: R-\{0\} \rightarrow \mathbb{Z}_{\geq 1}$ with the following property (capturing division with remainder): for any $m, n \in R$ there exist $q, r \in R$ such that $m=n q+r$ and r is either 0 or $d(r)<d(n)$. You already know that \mathbb{Z} and $F[X]$ are Euclidean domains (here F is a field).

1. Examples of Euclidean domains.
(a) Show that the ring of formal power series $F \llbracket X \rrbracket$ with coefficients in a field F is a Euclidean domain with Euclidean function $d\left(\sum_{k \geq n} a_{k} X^{k}\right)=n$ if $a_{n} \neq 0$. [Hint: When is a power series invertible?]
(b) For $d=-1,-2$ show that $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain with Euclidean function $d(a+b \sqrt{d})=$ $N_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}(a+b \sqrt{d})=a^{2}-b^{2} d$ (this is the square of the usual Euclidean distance in the twodimensional vector space $\mathbb{Q}+\mathbb{Q} \sqrt{d} \subset \mathbb{C})$. [Hint: Define q as the element of $\mathbb{Z}[\sqrt{d}]$ closest to $m / n \in \mathbb{Q}(\sqrt{d})$; draw a picture to show that then q is at most distance 1 away from m / n and conclude that $d(r / n)<1$.]
(c) Show that $\mathbb{Z}\left[\zeta_{3}\right]$ is a Euclidean domain with Euclidean function $d\left(a+b \zeta_{3}\right)=\left|a+b \zeta_{3}\right|^{2}=a^{2}-a b+b^{2}$. [Hint: Define q as the element of $\mathbb{Z}\left[\zeta_{3}\right]$ closest to $m / n \in \mathbb{Q}\left(\zeta_{3}\right)$.]
Remark 1. The ring $\mathbb{Z}[\sqrt{d}]$ is Euclidean with respect to the norm Euclidean function if and only if d is one of $-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73$.
2. If R is a Dedekind domain, \mathfrak{p} is a prime ideal of R and I is any ideal let $v_{\mathfrak{p}}(I)$ be the exponent of \mathfrak{p} in the unique factorization of I into prime ideals. If $x \in R$ then $v_{\mathfrak{p}}(x)=v_{\mathfrak{p}}((x) R)$.
(a) Suppose R is a Dedekind domain, $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are prime ideals of R and $e_{1}, \ldots, e_{n} \in \mathbb{Z}$. Use the Chinese Remainder Theorem to show that there exists $x \in \operatorname{Frac} R$ such that $v_{\mathfrak{p}_{i}}(x)=e_{i}$ for all i.
(b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.
(c) Suppose R is a Dedekind domain with finitely many prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$. Show that R is a Euclidean domain with Euclidean function $d(r)=\sum v_{\mathfrak{p}_{i}}(r)$. [Hint: reduce to the case when m and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime to all prime ideals \mathfrak{p}_{i} not dividing n.]
Remark 2. Suppose R is a Dedekind domain and I is an ideal of R. Let $R_{(I)}$ be the subring of $\operatorname{Frac}(R)$ consisting of fractions $\frac{m}{n}$ whose denominators are coprime to I. Then the prime ideals of $R_{(I)}$ are precisely the (finitely many) prime ideals dividing I.
3. (a) Show that every Euclidean domain R is a PID by showing that every ideal is generated by an element which minimizes the Euclidean function.
(b) Show that every PID is integrally closed and conclude that $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain.
4. The Euclidean domain (necessarily a PID) $\mathbb{Z}\left[\zeta_{3}\right]$.
(a) If p is a prime $\equiv 2(\bmod 3)$ and $p \mid x^{2}+x y+y^{2}$ with $x, y \in \mathbb{Z}$ show that $p \mid x, y .[$ Hint: $p-1 \equiv 1$ $(\bmod 3)$.
(b) If p is a prime $\equiv 1(\bmod 3)$ show that $p \mid a^{2}+a+1$ for some integer a. [Hint: \mathbb{F}_{p}^{\times}is cyclic.]
(c) If $p \equiv 1(\bmod 3)$ is a prime in \mathbb{Z} which is also a prime in $\mathbb{Z}\left[\zeta_{3}\right]$ then p cannot divide $a^{2}+a+1=$ $\left(a-\zeta_{3}\right)\left(a-\zeta_{3}^{2}\right)$ and conclude that p is reducible. Deduce that $p=x^{2}+x y+y^{2}$ for some $x, y \in \mathbb{Z}$.
(d) Suppose $n=3^{k} \prod_{p \equiv 1(\bmod 3)} p^{n_{p}} \prod_{q \equiv 2(\bmod 3)} q^{m_{q}}$ is a positive integer. Show that $x^{2}+x y+y^{2}=n$ has solutions with $x, y \in \mathbb{Z}$ only if m_{q} are all even in which case the solutions can be enumerated as

$$
x-y \zeta_{3}=u\left(1-\zeta_{3}\right)^{k} \prod_{p \equiv 1}\left(a_{p}-b_{p} \zeta_{3}\right)^{u_{p}}\left(a_{p}-b_{p} \zeta_{3}^{2}\right)^{n_{p}-u_{p}} \prod_{q \equiv 2} q_{(\bmod 3)} q^{m_{q} / 2}
$$

where $u \in \mathbb{Z}\left[\zeta_{3}\right]^{\times}=\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}, p=a_{p}^{2}+a_{p} b_{p}+b_{p}^{2}$ and $0 \leq u_{p} \leq n_{p}$. Conclude that the number of solutions is $6\left(d_{+}(n)-d_{-}(n)\right)$ where $d_{ \pm}(n)$ is the number of divisors of n which are $\equiv \pm 1(\bmod 3)$.
5. Show that $14=2 \cdot 7=(1+\sqrt{-13})(1-\sqrt{-13})$ are two distinct factorizations into irreducible elements of $\mathbb{Z}[\sqrt{-13}]$. What is the factorization of 14 into prime ideals of $\mathbb{Z}[\sqrt{-13}]$?
6. (Optional, since the proof is identical to the proof of Problem 4, and you can find it in many places) The Euclidean domain (necessarily a PID) $\mathbb{Z}[i]$.
(a) If p is a prime $\equiv 3(\bmod 4)$ and $p \mid x^{2}+y^{2}$ for $x, y \in \mathbb{Z}$ show that $p \mid x, y$. [Hint: $(p-1) / 2$ is odd!]
(b) If $p \equiv 1(\bmod 4)$ show that $p \mid a^{2}+1$ for some a. [Hint: Either use the fact that \mathbb{F}_{p}^{\times}is cyclic or show that $a=\left(\frac{p-1}{2}\right)$! works.]
(c) Show that if p a prime $\equiv 1(\bmod 4)$ is also prime in $\mathbb{Z}[i]$ then p cannot divide $a^{2}+1=(a+i)(a-i)$ and conclude that p cannot be prime in $\mathbb{Z}[i]$. Deduce that $p=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$.
(d) Suppose $n=2^{k} \prod_{p \equiv 1(\bmod 4)} p^{n_{p}} \prod_{q \equiv 3(\bmod 4)} q^{m_{q}}$ is a positive integer. Show that $x^{2}+y^{2}=n$ has solutions with $x, y \in \mathbb{Z}$ only if m_{q} are all even in which case the solutions can be enumerated as

$$
x+i y=u(1+i)^{k} \prod_{p \equiv 1}\left(a_{p}+b_{p} i\right)^{u_{p}}\left(a_{p}-b_{p} i\right)^{n_{p}-u_{p}} \prod_{q \equiv 3} \prod_{(\bmod 4)} q^{m_{q} / 2}
$$

where $p=a_{p}^{2}+b_{p}^{2}, u \in\{ \pm 1, \pm i\}$ and $0 \leq u_{p} \leq n_{p}$. Conclude that the number of solutions is $4\left(d_{+}(n)-d_{-}(n)\right)$ where $d_{ \pm}(n)$ is the number of divisors of n which are $\equiv \pm 1(\bmod 4)$.

