Math 80220 Algebrai Number Theory Problem Set 2

Andrei Jorza

Due Wednesday, February 12

Definition 1. A Euclidean domain is a ring R with a Euclidean algorithm, i.e., there exists a "Euclidean" function $d : R - \{0\} \to \mathbb{Z}_{\geq 1}$ with the following property (capturing division with remainder): for any $m, n \in R$ there exist $q, r \in R$ such that m = nq + r and r is either 0 or d(r) < d(n). You already know that \mathbb{Z} and F[X] are Euclidean domains (here F is a field).

- 1. Examples of Euclidean domains.
 - (a) Show that the ring of formal power series F[X] with coefficients in a field F is a Euclidean domain with Euclidean function $d(\sum_{k\geq n} a_k X^k) = n$ if $a_n \neq 0$. [Hint: When is a power series invertible?]
 - (b) For d = -1, -2 show that $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain with Euclidean function $d(a + b\sqrt{d}) = N_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}(a + b\sqrt{d}) = a^2 b^2 d$ (this is the square of the usual Euclidean distance in the twodimensional vector space $\mathbb{Q} + \mathbb{Q}\sqrt{d} \subset \mathbb{C}$). [Hint: Define q as the element of $\mathbb{Z}[\sqrt{d}]$ closest to $m/n \in \mathbb{Q}(\sqrt{d})$; draw a picture to show that then q is at most distance 1 away from m/n and conclude that d(r/n) < 1.]
 - (c) Show that $\mathbb{Z}[\zeta_3]$ is a Euclidean domain with Euclidean function $d(a+b\zeta_3) = |a+b\zeta_3|^2 = a^2 ab + b^2$. [Hint: Define q as the element of $\mathbb{Z}[\zeta_3]$ closest to $m/n \in \mathbb{Q}(\zeta_3)$.]

Remark 1. The ring $\mathbb{Z}[\sqrt{d}]$ is Euclidean with respect to the norm Euclidean function if and only if *d* is one of -11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

- 2. If R is a Dedekind domain, \mathfrak{p} is a prime ideal of R and I is any ideal let $v_{\mathfrak{p}}(I)$ be the exponent of \mathfrak{p} in the unique factorization of I into prime ideals. If $x \in R$ then $v_{\mathfrak{p}}(x) = v_{\mathfrak{p}}(x)R$.
 - (a) Suppose R is a Dedekind domain, $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are prime ideals of R and $e_1, \ldots, e_n \in \mathbb{Z}$. Use the Chinese Remainder Theorem to show that there exists $x \in \operatorname{Frac} R$ such that $v_{\mathfrak{p}_i}(x) = e_i$ for all i.
 - (b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.
 - (c) Suppose R is a Dedekind domain with finitely many prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Show that R is a Euclidean domain with Euclidean function $d(r) = \sum v_{\mathfrak{p}_i}(r)$. [Hint: reduce to the case when m and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime to all prime ideals \mathfrak{p}_i not dividing n.]

Remark 2. Suppose R is a Dedekind domain and I is an ideal of R. Let $R_{(I)}$ be the subring of Frac(R) consisting of fractions $\frac{m}{n}$ whose denominators are coprime to I. Then the prime ideals of $R_{(I)}$ are precisely the (finitely many) prime ideals dividing I.

- 3. (a) Show that every Euclidean domain R is a PID by showing that every ideal is generated by an element which minimizes the Euclidean function.
 - (b) Show that every PID is integrally closed and conclude that $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain.
- 4. The Euclidean domain (necessarily a PID) $\mathbb{Z}[\zeta_3]$.

- (a) If p is a prime $\equiv 2 \pmod{3}$ and $p \mid x^2 + xy + y^2$ with $x, y \in \mathbb{Z}$ show that $p \mid x, y$. [Hint: $p 1 \equiv 1 \pmod{3}$.]
- (b) If p is a prime $\equiv 1 \pmod{3}$ show that $p \mid a^2 + a + 1$ for some integer a. [Hint: \mathbb{F}_p^{\times} is cyclic.]
- (c) If $p \equiv 1 \pmod{3}$ is a prime in \mathbb{Z} which is also a prime in $\mathbb{Z}[\zeta_3]$ then p cannot divide $a^2 + a + 1 = (a \zeta_3)(a \zeta_3^2)$ and conclude that p is reducible. Deduce that $p = x^2 + xy + y^2$ for some $x, y \in \mathbb{Z}$.
- (d) Suppose $n = 3^k \prod_{p \equiv 1 \pmod{3}} p^{n_p} \prod_{q \equiv 2 \pmod{3}} q^{m_q}$ is a positive integer. Show that $x^2 + xy + y^2 = n$ has solutions with $x, y \in \mathbb{Z}$ only if m_q are all even in which case the solutions can be enumerated as $m_q = y(1 \zeta)^k \prod_{q \equiv 1 \pmod{3}} (q_q h_q \zeta)^{u_q} (q_q h_q \zeta)^{n_q u_q} \prod_{q \equiv 1 \pmod{3}} q^{m_q/2}$

$$x - y\zeta_3 = u(1 - \zeta_3)^k \prod_{p \equiv 1 \pmod{3}} (a_p - b_p\zeta_3)^{u_p} (a_p - b_p\zeta_3^2)^{n_p - u_p} \prod_{q \equiv 2 \pmod{3}} q^{m_{q/p}}$$

where $u \in \mathbb{Z}[\zeta_3]^{\times} = \{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}$, $p = a_p^2 + a_p b_p + b_p^2$ and $0 \le u_p \le n_p$. Conclude that the number of solutions is $6(d_+(n) - d_-(n))$ where $d_{\pm}(n)$ is the number of divisors of n which are $\equiv \pm 1 \pmod{3}$.

- 5. Show that $14 = 2 \cdot 7 = (1 + \sqrt{-13})(1 \sqrt{-13})$ are two distinct factorizations into irreducible elements of $\mathbb{Z}[\sqrt{-13}]$. What is the factorization of 14 into prime ideals of $\mathbb{Z}[\sqrt{-13}]$?
- 6. (Optional, since the proof is identical to the proof of Problem 4, and you can find it in many places) The Euclidean domain (necessarily a PID) $\mathbb{Z}[i]$.
 - (a) If p is a prime $\equiv 3 \pmod{4}$ and $p \mid x^2 + y^2$ for $x, y \in \mathbb{Z}$ show that $p \mid x, y$. [Hint: (p-1)/2 is odd!]
 - (b) If $p \equiv 1 \pmod{4}$ show that $p \mid a^2 + 1$ for some a. [Hint: Either use the fact that \mathbb{F}_p^{\times} is cyclic or show that $a = \left(\frac{p-1}{2}\right)!$ works.]
 - (c) Show that if p a prime $\equiv 1 \pmod{4}$ is also prime in $\mathbb{Z}[i]$ then p cannot divide $a^2 + 1 = (a+i)(a-i)$ and conclude that p cannot be prime in $\mathbb{Z}[i]$. Deduce that $p = x^2 + y^2$ for some $x, y \in \mathbb{Z}$.
 - (d) Suppose $n = 2^k \prod_{p \equiv 1 \pmod{4}} p^{n_p} \prod_{q \equiv 3 \pmod{4}} q^{m_q}$ is a positive integer. Show that $x^2 + y^2 = n$ has solutions with $x, y \in \mathbb{Z}$ only if m_q are all even in which case the solutions can be enumerated as $m + in = n(1+i)^k \prod_{q \equiv 1 \pmod{4}} (a_q + b_q i)^{n_p} (a_q b_q i)^{n_p u_p} \prod_{q \equiv 1 \pmod{4}} a^{m_q/2}$

$$x + iy = u(1+i)^k \prod_{p \equiv 1 \pmod{4}} (a_p + b_p i)^{u_p} (a_p - b_p i)^{n_p - u_p} \prod_{q \equiv 3 \pmod{4}} q^{m_q/2}$$

where $p = a_p^2 + b_p^2$, $u \in \{\pm 1, \pm i\}$ and $0 \le u_p \le n_p$. Conclude that the number of solutions is $4(d_+(n) - d_-(n))$ where $d_{\pm}(n)$ is the number of divisors of n which are $\equiv \pm 1 \pmod{4}$.