
Math 80220 Algebrai Number Theory

Problem Set 2

Andrei Jorza

Due Wednesday, February 12

Definition 1. A Euclidean domain is a ring R with a Euclidean algorithm, i.e., there exists a “Euclidean”
function d : R−{0} → Z≥1 with the following property (capturing division with remainder): for any m,n ∈ R
there exist q, r ∈ R such that m = nq + r and r is either 0 or d(r) < d(n). You already know that Z and
F [X] are Euclidean domains (here F is a field).

1. Examples of Euclidean domains.

(a) Show that the ring of formal power series F [[X]] with coefficients in a field F is a Euclidean domain
with Euclidean function d(

∑
k≥n akX

k) = n if an 6= 0. [Hint: When is a power series invertible?]

(b) For d = −1,−2 show that Z[
√
d] is a Euclidean domain with Euclidean function d(a + b

√
d) =

NQ(
√
d)/Q(a + b

√
d) = a2 − b2d (this is the square of the usual Euclidean distance in the two-

dimensional vector space Q + Q
√
d ⊂ C). [Hint: Define q as the element of Z[

√
d] closest to

m/n ∈ Q(
√
d); draw a picture to show that then q is at most distance 1 away from m/n and

conclude that d(r/n) < 1.]

(c) Show that Z[ζ3] is a Euclidean domain with Euclidean function d(a+bζ3) = |a+bζ3|2 = a2−ab+b2.
[Hint: Define q as the element of Z[ζ3] closest to m/n ∈ Q(ζ3).]

Remark 1. The ring Z[
√
d] is Euclidean with respect to the norm Euclidean function if and only if d

is one of −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

2. If R is a Dedekind domain, p is a prime ideal of R and I is any ideal let vp(I) be the exponent of p in
the unique factorization of I into prime ideals. If x ∈ R then vp(x) = vp((x)R).

(a) Suppose R is a Dedekind domain, p1, . . . , pn are prime ideals of R and e1, . . . , en ∈ Z. Use the
Chinese Remainder Theorem to show that there exists x ∈ FracR such that vpi

(x) = ei for all i.

(b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.

(c) Suppose R is a Dedekind domain with finitely many prime ideals p1, . . . , pn. Show that R is a
Euclidean domain with Euclidean function d(r) =

∑
vpi(r). [Hint: reduce to the case when m

and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime
to all prime ideals pi not dividing n.]

Remark 2. Suppose R is a Dedekind domain and I is an ideal of R. Let R(I) be the subring of Frac(R)
consisting of fractions m

n whose denominators are coprime to I. Then the prime ideals of R(I) are
precisely the (finitely many) prime ideals dividing I.

3. (a) Show that every Euclidean domain R is a PID by showing that every ideal is generated by an
element which minimizes the Euclidean function.

(b) Show that every PID is integrally closed and conclude that Z[
√
−3] is not a Euclidean domain.

4. The Euclidean domain (necessarily a PID) Z[ζ3].
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(a) If p is a prime ≡ 2 (mod 3) and p | x2 + xy+ y2 with x, y ∈ Z show that p | x, y. [Hint: p− 1 ≡ 1
(mod 3).]

(b) If p is a prime ≡ 1 (mod 3) show that p | a2 + a+ 1 for some integer a. [Hint: F×p is cyclic.]

(c) If p ≡ 1 (mod 3) is a prime in Z which is also a prime in Z[ζ3] then p cannot divide a2 + a+ 1 =
(a− ζ3)(a− ζ23 ) and conclude that p is reducible. Deduce that p = x2 +xy+ y2 for some x, y ∈ Z.

(d) Suppose n = 3k
∏

p≡1 (mod 3) p
np
∏

q≡2 (mod 3) q
mq is a positive integer. Show that x2+xy+y2 = n

has solutions with x, y ∈ Z only if mq are all even in which case the solutions can be enumerated
as

x− yζ3 = u(1− ζ3)k
∏

p≡1 (mod 3)

(ap − bpζ3)up(ap − bpζ23 )np−up

∏
q≡2 (mod 3)

qmq/2

where u ∈ Z[ζ3]× = {±1,±ζ3,±ζ23}, p = a2p + apbp + b2p and 0 ≤ up ≤ np. Conclude that the
number of solutions is 6(d+(n) − d−(n)) where d±(n) is the number of divisors of n which are
≡ ±1 (mod 3).

5. Show that 14 = 2 · 7 = (1 +
√
−13)(1−

√
−13) are two distinct factorizations into irreducible elements

of Z[
√
−13]. What is the factorization of 14 into prime ideals of Z[

√
−13]?

6. (Optional, since the proof is identical to the proof of Problem 4, and you can find it in many places)
The Euclidean domain (necessarily a PID) Z[i].

(a) If p is a prime ≡ 3 (mod 4) and p | x2 +y2 for x, y ∈ Z show that p | x, y. [Hint: (p−1)/2 is odd!]

(b) If p ≡ 1 (mod 4) show that p | a2 + 1 for some a. [Hint: Either use the fact that F×p is cyclic or

show that a =
(
p−1
2

)
! works.]

(c) Show that if p a prime ≡ 1 (mod 4) is also prime in Z[i] then p cannot divide a2+1 = (a+i)(a−i)
and conclude that p cannot be prime in Z[i]. Deduce that p = x2 + y2 for some x, y ∈ Z.

(d) Suppose n = 2k
∏

p≡1 (mod 4) p
np
∏

q≡3 (mod 4) q
mq is a positive integer. Show that x2 + y2 = n

has solutions with x, y ∈ Z only if mq are all even in which case the solutions can be enumerated
as

x+ iy = u(1 + i)k
∏

p≡1 (mod 4)

(ap + bpi)
up(ap − bpi)np−up

∏
q≡3 (mod 4)

qmq/2

where p = a2p + b2p, u ∈ {±1,±i} and 0 ≤ up ≤ np. Conclude that the number of solutions is
4(d+(n)− d−(n)) where d±(n) is the number of divisors of n which are ≡ ±1 (mod 4).
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