Math 80220 Algebraic Number Theory Problem Set 3

Andrei Jorza

due Wednesday, February 26 (you have 2 weeks to complete this set)

Almost half of the problems in this set (problems 3e, 4, 5b, 6 and 7c) are optional. You also have 2 weeks to complete this set.

1. This exercise gives an algorithm for decomposing primes under finite extensions. Let L / K be number fields, $\alpha \in \mathcal{O}_{L}$ such that $L=K(\alpha)$ and \mathfrak{p} a prime ideal of \mathcal{O}_{K} such that the rational prime p lying below \mathfrak{p} does not divide the integer $\left[\mathcal{O}_{L}: \mathcal{O}_{K}[\alpha]\right]$. Let f be the minimal polynomial of α over K, f necessarily monic.
(a) Show that $f \in \mathcal{O}_{K}[X]$. [Hint: what are the roots of f ?]
(b) For a polynomial $h \in \mathcal{O}_{K}[X]$ let $\bar{h} \in k_{\mathfrak{p}}[X]$ be the image $\bmod \mathfrak{p}$. Since $k_{\mathfrak{p}}[X]$ is a UFD one may find monic polynomials $g_{i} \in \mathcal{O}_{K}[X]$, of degree f_{i}, such that $\bar{f}(X)=\prod \bar{g}_{i}(X)^{e_{i}}$ is the decomposition into distinct irreducible polynomials \bar{g}_{i}. Let $\mathfrak{q}_{i}=\left(\mathfrak{p}, g_{i}(\alpha)\right)=\mathfrak{p} \mathcal{O}_{L}+\left(g_{i}(\alpha)\right) \mathcal{O}_{L}$. Show that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]+p \mathcal{O}_{L}$ and deduce that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]+\mathfrak{q}_{i}$ for all i. [Hint: p is invertible in $\left.\mathcal{O}_{L} / \mathcal{O}_{K}[\alpha].\right]$
(c) Show that $\mathcal{O}_{K}[X] /\left(\mathfrak{p}, g_{i}(X)\right) \cong k_{\mathfrak{p}}[X] /\left(\bar{g}_{i}\right)$ under the natural $\bmod \mathfrak{p}$ map.
(d) Show that $\mathcal{O}_{K}[X] \rightarrow \mathcal{O}_{L} / \mathfrak{q}_{i}$ under the map $X \mapsto \alpha$ is surjective. Show that it yields a map $\mathcal{O}_{K}[X] /\left(\mathfrak{p}, g_{i}(X)\right) \rightarrow \mathcal{O}_{L} / \mathfrak{q}_{i}$.
(e) Deduce that \mathfrak{q}_{i} is either \mathcal{O}_{L} or a prime ideal. In the former case show that $f_{\mathfrak{q}_{i} / \mathfrak{p}}=f_{i}$.
(f) Use the fact that for $i \neq j$ the polynomials \bar{g}_{i} and \bar{g}_{j} are distinct irreducibles in $k_{\mathfrak{p}}[X]$ to show that $\mathfrak{q}_{i}+\mathfrak{q}_{j}=\mathcal{O}_{L}$. [Hint: lift to $\mathcal{O}_{K}[X]$ the relation $\bar{g}_{i} \bar{u}+\bar{g}_{j} \bar{v}=1$ which comes from the Euclidean algorithm in $\left.k_{\mathfrak{p}}[X].\right]$
(g) Show that $\prod g_{i}(\alpha)^{e_{i}} \mathcal{O}_{L} \subset \mathfrak{p} \mathcal{O}_{L}$ and that $\mathfrak{p} \mathcal{O}_{L}+\prod g_{i}(\alpha)^{e_{i}} \mathcal{O}_{L} \mid \prod \mathfrak{q}_{i}^{e_{i}}$. Deduce that $\mathfrak{p} \mathcal{O}_{L} \mid \prod \mathfrak{q}_{i}^{e_{i}}$.
(h) Reorder the ideals \mathfrak{q}_{i} such that $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{s}$ are prime ideals of \mathcal{O}_{L} and $\mathfrak{q}_{s+1}, \ldots=\mathcal{O}_{L}$. Show that $\mathfrak{p} \mathcal{O}_{L}=\prod_{i=1}^{s} \mathfrak{q}_{i}^{d_{i}}$ with $d_{i} \leq e_{i}$. Show that $[L: K]=\sum_{i=1}^{s} d_{i} f_{i}$ and $[L: K]=\sum e_{i} f_{i}$ and deduce that \mathfrak{q}_{i} are all prime ideals and that $\mathfrak{p} \mathcal{O}_{L}=\prod \mathfrak{q}_{i}^{e_{i}}$ with $f_{\mathfrak{q}_{i} / \mathfrak{p}}=\operatorname{deg} g_{i}$ and $e_{\mathfrak{q}_{i} / \mathfrak{p}}=e_{i}$.
2. Let m be a square-free integer $\neq 1$. Let $K=\mathbb{Q}(\sqrt{m})$ and \mathcal{O}_{K} be the ring of integers. Show that the following are prime factorizations of $(p) \mathcal{O}_{K}$ in \mathcal{O}_{K} :
(a) if $p \mid m$ then $(p) \mathcal{O}_{K}=(p, \sqrt{m})^{2}$. [Hint: The ring of integers of K depends on whether $m \equiv 1,2,3$ $(\bmod 4)$ but in applying Problem 1 you can choose any α of degree $[L: K]$ in particular you can choose \sqrt{m} independent of $m \bmod 4$. You just have to verify the hypotheses of Problem 1.]
(b) if m is odd then

$$
(2) \mathcal{O}_{K}=\left\{\begin{array}{lll}
(2,1+\sqrt{m})^{2} & m \equiv 3 & (\bmod 4) \\
\left(2, \frac{1+\sqrt{m}}{2}\right)\left(2, \frac{1-\sqrt{m}}{2}\right) & m \equiv 1 & (\bmod 8) \\
(2) & m \equiv 5 & (\bmod 8)
\end{array}\right.
$$

[Caution: the hypothesis of Problem 1 is not always satisfied here for $\mathbb{Z}[\sqrt{m}]$.]
(c) if $p>2$ and $p \nmid m$ then

$$
(p) \mathcal{O}_{K}= \begin{cases}(p, a+\sqrt{m})(p, a-\sqrt{m}) & m \equiv a^{2} \quad(\bmod p) \\ (p) & m \text { not a square } \bmod p\end{cases}
$$

3. Let $p>2$ be a prime and $K=\mathbb{Q}\left(\zeta_{p}\right)$. Let $f(X)=X^{p-1}+\cdots+X+1$ be the minimal polynomial of ζ_{p}. Throughout this problem you may use Problem 1.
(a) Show that $f(X) \equiv(X-1)^{p-1}(\bmod p)$ and conclude that $(p) \mathcal{O}_{K}=\left(p, 1-\zeta_{p}\right)^{p-1}$ with K / \mathbb{Q} totally tamely ramified at $\mathfrak{p}=\left(p, 1-\zeta_{p}\right)$ over (p). Show that $1-\zeta_{p} \mid p$ and deduce that $\left(p, 1-\zeta_{p}\right)=\left(1-\zeta_{p}\right)$.
(b) Let $q \nmid p$ be a prime and let r be the smallest positive integer such that $q^{r} \equiv 1(\bmod p)$. Show that $r \mid p-1$.
(c) For r as above show that $f(X)$ splits into a product of linear terms over $\mathbb{F}_{q^{r}}$ but not over any proper subfield of $\mathbb{F}_{q^{r}}$. [Hint: $\mathbb{F}_{q^{r}}^{\times}$is a cyclic group of order $q^{r}-1$.]
(d) Conclude that $(q) \mathcal{O}_{K}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{d}$ where $d=(p-1) / r$ is the prime factorization of the ideal $(p) \mathcal{O}_{K}$ and that K / \mathbb{Q} is unramified at \mathfrak{q}_{i} / q with $f_{\mathfrak{q}_{i} / q}=r$. [Hint: $f(X)$ splits into linear facors over $\mathbb{F}_{q^{r}}$ but over no smaller finite field and so show that $f(X)$ splits over \mathbb{F}_{q} into irreducible factors of degree r.]
(e) (Optional since the same proof works) More generally suppose $n \geq 1$ and $L=\mathbb{Q}\left(\zeta_{p^{n}}\right)$. Let $f(X)=$ $\left(X^{p^{n}}-1\right) /\left(X^{p^{n-1}}-1\right)$ be the minimal polynomial of $\zeta_{p^{n}}$. Show that the same decompositions hold, i.e.,
i. $(p) \mathcal{O}_{L}=\left(p, 1-\zeta_{p^{n}}\right)^{p^{n-1}(p-1)}$ and
ii. if $q \neq p$ is a prime and r is the smallest positive integer such that $q^{r} \equiv 1\left(\bmod p^{n}\right)$ then $(q) \mathcal{O}_{L}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{d}$ where $d=p^{n-1}(p-1) / r$ is the prime factorization of the ideal $(p) \mathcal{O}_{L}$ and L / \mathbb{Q} is unramified at \mathfrak{q}_{i} / q with $f_{\mathfrak{q}_{i} / q}=r$.
4. (Optional) Let $L, L^{\prime} / K$ be number fields and \mathfrak{p} a prime ideal of \mathcal{O}_{K} which splits completely in L and L^{\prime}. Suppose $\alpha \in \mathcal{O}_{L}$ such that $L=K(\alpha)$ and \mathfrak{p} is coprime to $\left[\mathcal{O}_{L}: \mathcal{O}_{K}[\alpha]\right]$.
(a) Let $f(X)$ be the minimal polynomial of α over K. Show that $f(\bmod \mathfrak{p})$ splits into linear factors.
(b) Show that $L L^{\prime}=L^{\prime}(\alpha)$ and the minimal polynomial $g(X)$ of α over L divides $f(X)$ in $\mathcal{O}_{L^{\prime}}[X]$.
(c) For every prime ideal $\mathfrak{q}^{\prime} \mid \mathfrak{p}$ of $\mathcal{O}_{L^{\prime}}$ show that $\mathfrak{q}^{\prime} \mathcal{O}_{L L^{\prime}}$ splits completely.
(d) Deduce that \mathfrak{p} splits completely in the composite extension $L L^{\prime}$.
5. (a) Show that $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is everywhere unramified over $\mathbb{Q}(\sqrt{15})$. (Remark: $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is the largest extension of $\mathbb{Q}(\sqrt{15})$ which is everywhere unramified.) [Hint: Compute the different. You may use that that $\mathcal{O}_{\mathbb{Q}(\sqrt{3} . \sqrt{5})}$ has as integral basis $\left.1, \sqrt{3}, \frac{1+\sqrt{5}}{2}, \frac{\sqrt{3}+\sqrt{15}}{2}\right]$.]
(b) (Optional, since same as the first part, but more work.) For which m, n square-free, $\neq 1$ and coprime is $\mathbb{Q}(\sqrt{m}, \sqrt{n}) / \mathbb{Q}(\sqrt{m n})$ everywhere unramified? You may use the fact that an integral basis of the ring of integers of $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is given by

m	n	Integral basis
$\equiv 3(\bmod 4)$	$\equiv 3(\bmod 4)$	$1, \sqrt{m}, \frac{\sqrt{m}+\sqrt{n}}{2}, \frac{1+\sqrt{m n}}{2}$
$\equiv 3(\bmod 4)$	$\equiv 2(\bmod 4)$	$1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{m n}}{2}$
$\equiv 1(\bmod 4)$	$\equiv 2,3(\bmod 4)$	$1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{m n}}{2}$
$\equiv 1(\bmod 4)$	$\equiv 1(\bmod 4)$	$1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m n}}{4}$

6. (Optional) Let K, L be two number fields and assume that $[K L: \mathbb{Q}]=[K: \mathbb{Q}][L: \mathbb{Q}]$. In this exercise you study when $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$.
(a) Suppose α_{i} is an integral basis of \mathcal{O}_{K} and β_{j} is an integral basis of \mathcal{O}_{L}. Show that $\alpha_{i} \beta_{j}$ form an integral basis of $\mathcal{O}_{K} \mathcal{O}_{L}$. [Hint: what is the degree of $K L / L$?]
(b) Show that every $\alpha \in \mathcal{O}_{K L}$ is of the form

$$
\alpha=\sum_{i, j} \frac{m_{i, j}}{r} \alpha_{i} \beta_{j}
$$

where $r, m_{i, j} \in \mathbb{Z}$ with r coprime to $\operatorname{gcd}\left(m_{i, j}\right)$.
(c) Recall that the embeddings of $K L \hookrightarrow \mathbb{C}$ fixing \mathbb{Q} are of the form $\sigma \tau$ where $\sigma: K \hookrightarrow \mathbb{C}$ fixing \mathbb{Q} and $\tau: K L \hookrightarrow \mathbb{C}$ fixing L.
Let $x_{i}=\sum_{j} \frac{m_{i, j}}{r} \beta_{j}$ and $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of $K \hookrightarrow \mathbb{C}$ fixing \mathbb{Q}. Show that $\sum_{i} \sigma_{j}\left(\alpha_{i}\right) x_{i}=$ $\left(\sigma_{j} \tau\right)(\alpha)$. If $d=\operatorname{det}\left(\left(\sigma_{j}\left(\alpha_{i}\right)\right)\right.$ show that $x_{i} \in \frac{1}{d} \overline{\mathbb{Z}}$ where $\overline{\mathbb{Z}}$ is the ring of algebraic integers.
(d) Recall that $d^{2}=D=\operatorname{disc}\left(\mathcal{O}_{K}\right) \in \mathbb{Z}$ and show that $D x_{i}=\sum \frac{D m_{i, j}}{r} \beta_{j} \in \mathcal{O}_{L}$. Deduce that $r \mid D$ and $r \mid \operatorname{gcd}\left(\operatorname{disc}\left(\mathcal{O}_{K}\right), \operatorname{disc}\left(\mathcal{O}_{L}\right)\right)$.
(e) Conclude that if $\operatorname{disc}\left(\mathcal{O}_{K}\right)$ and $\operatorname{disc}\left(\mathcal{O}_{L}\right)$ are coprime then $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$. In particular, show that if n is square-free then $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$. (Recall that we proved this for n prime.)
(f) Show that $\frac{\sqrt{3}+\sqrt{7}}{2} \in \mathcal{O}_{\mathbb{Q}(\sqrt{3}, \sqrt{7})}-\mathcal{O}_{\mathbb{Q}(\sqrt{3})} \mathcal{O}_{\mathbb{Q}(\sqrt{7})}$.
7. (a) If L / K is a Galois extension of number fields and $\mathcal{O}_{L}=\mathcal{O}_{K}\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ show that $I_{\mathfrak{q} / \mathfrak{p}}=\{\sigma \in$ $\left.G_{L / K} \mid \sigma\left(\alpha_{i}\right) \equiv \alpha_{i}(\bmod \mathfrak{q}), \forall i\right\}$ and similarly for the higher ramification groups $V_{m}=\{\sigma \in$ $\left.G_{L / K} \mid \sigma\left(\alpha_{i}\right) \equiv \alpha_{i}\left(\bmod \mathfrak{q}^{m+1}\right), \forall i\right\}$.
(b) Consider the extension $K=\mathbb{Q}(\sqrt{2+\sqrt{3}}) / \mathbb{Q}$.
i. Write $\alpha=\sqrt{2+\sqrt{3}}$. Show that the roots of the minimal polynomial of α are $\pm \alpha, \pm \alpha^{-1}$ and deduce that $\alpha \in \mathcal{O}_{K}^{\times}$.
ii. Show that K / \mathbb{Q} is Galois with Galois group $G_{K / \mathbb{Q}} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ having generators $\sigma(\alpha)=$ α^{-1} and $\tau(\alpha)=-\alpha$.
iii. Show that $(3) \mathcal{O}_{K}=(\sqrt{3})^{2}$ is the prime factorization in \mathcal{O}_{K}. Conclude that $I_{\sqrt{3} / 3}=\{1, \sigma \tau\}$ but $P_{\sqrt{3} / 3}=\{1\}$. (You may assume that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{2+\sqrt{3}}]$.)
iv. Show that $(2) \mathcal{O}_{K}=\mathfrak{q}^{4}$ where $\mathfrak{q}=(\alpha+1)$ is the prime factorization in \mathcal{O}_{K}. Show that $I_{\mathfrak{q} / 2}=P_{q / 2}=G_{K / \mathbb{Q}}, V_{2}=V_{3}=\{1, \tau\}$ and $V_{m}=\{1\}$ for $m \geq 4$. [Hint: Check that $\alpha+1 \mid \alpha-1$.
(c) (Optional) Let $p>2$ be a prime and $K=\mathbb{Q}\left(\zeta_{p^{n}}\right)$ for $n \geq 2$. Recall that $(p) \mathcal{O}_{K}=\mathfrak{q}^{p^{n-1}(p-1)}$ where $\mathfrak{q}=\left(p, 1-\zeta_{p^{n}}\right)$ and \mathfrak{q} / p is totally ramified.
i. Show that $I_{\mathfrak{q} / p}=G_{K / \mathbb{Q}}$.
ii. Let $\alpha=\zeta_{p^{n}}-1$. Show that $N_{K / \mathbb{Q}}(\alpha)=p$ and deduce that $(\alpha)=(p, \alpha)$. Thus $\alpha^{p^{n-1}(p-1)}$ the is the power of α in p.
iii. For $m<n$ show that the largest power of α dividing $(\alpha+1)^{p^{m} \ell}-1$ (with $p \nmid \ell$) is $\alpha^{p^{m}}$ and conclude that $\left(\zeta_{p^{n}}-1\right)^{p^{m}} \mid \zeta_{p^{n}}^{p^{m} \ell}-1$ but $\left(\zeta_{p^{n}}-1\right)^{p^{m}+1} \nmid \zeta_{p^{n}}^{p^{m} \ell}-1$. [Hint: first, do this for $\ell=1$ using the fact that if $k \neq 0, p^{m}$ then $p \left\lvert\,\binom{ p^{m}}{k}\right.$; then deduce for all ℓ.]
iv. Finally deduce that for $m \geq 1$ we have $V_{m}=1+p^{m}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ as a subgroup of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \cong$ $G_{K / \mathbb{Q}}$.

