Math 80220 Algebraic Number Theory Problem Set 4

Andrei Jorza

due Wednesday, March 19

Do 3 of 5 problems.

1. Let K be a number field.

- (a) Show that if I is an ideal there exists a number field L/K such that $I\mathcal{O}_L$ is principal. [Hint: some power of I must be principal.]
- (b) Show that there exists a number field L/K such that every ideal of \mathcal{O}_K becomes principal in \mathcal{O}_L .

2. Let $f(X) = X^3 - 3X + 1$.

(a) Show that f(X) is irreducible over \mathbb{Q} and has 3 real roots. Let $K = \mathbb{Q}(\alpha)$ where α is a root. Show that

$$3^n \mathcal{O}_K \subset \mathbb{Z}[\alpha] \subset \mathcal{O}_K$$

for some n. [Hint: show that the discriminant of $1, \alpha, \alpha^2$ is the same as the discriminant of f.]

- (b) Show that $\alpha, \alpha + 2$ are units and that $(\alpha + 1)^3 = 3\alpha(\alpha + 2)$. What is the factorization of $(3)\mathcal{O}_K$ in \mathcal{O}_K ?
- (c) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha] + (3)\mathcal{O}_K$. [Hint: what is $\mathcal{O}_K/(3)$?]
- (d) Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. [Hint: if e_1, e_2, e_3 is an integral basis for \mathcal{O}_K what can you say about the highest power of 3 in the denominators of e_i ?]
- (e) Show that K has class number 1.
- (f) What is the subgroup $\mu_K \subset \mathcal{O}_K^{\times}$ of roots of unity? [Hint: What is the degree of ζ_n over \mathbb{Q} ?]
- (g) Show that α and $\alpha + 2$ are independent in \mathcal{O}_K^{\times} . Are they a basis for the free part of \mathcal{O}_K^{\times} ? [Hint: For the first part, show that the three roots lie in (-2, -1), (0, 1) and (1, 2) and if α and $\alpha + 2$ have a dependence then the same is true for the other two roots. For the second part compute $1/(\alpha + 2)$.]
- 3. Let $K = \mathbb{Q}(\sqrt[3]{7})$ with $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{7}]$.
 - (a) Determine which integral primes p ramify in K and how.
 - (b) Find examples of unramified primes p with decomposition $(p)\mathcal{O}_K = \mathfrak{q}_1 \ldots \mathfrak{q}_r$ in the following cases:
 - i. r = 3, f_{qi/p} = 1;
 ii. r = 2, f_{q1/p} = 1 and f_{q2/p} = 2;
 iii. r = 1, f_{q1/p} = 3.
 - (c) Show that $\operatorname{Cl}(K) \cong \mathbb{Z}/3\mathbb{Z}$ generated by $(2, \sqrt[3]{7} + 1)$. [Feel free to use a computer for multiplying fractional ideals.]
 - (d) Show that $2 \sqrt[3]{7}$ is a unit.

- (e) Show that in fact $2 \sqrt[3]{7}$ generates the free part of \mathcal{O}_K^{\times} :
 - i. Suppose u > 1 is a generator for the rank 1 abelian group \mathcal{O}_K^{\times} . Let $\sigma(u) = re^{i\theta}$ and $\overline{\sigma}(u)$ be the two complex conjugates of u. Show that $u = r^{-2}$.
 - ii. Show that

$$\operatorname{disc}(1, u, u^2) = -4\sin^2(\theta)(r^3 + r^{-3} - 2\cos(\theta))^2$$

and deduce that

$$|\operatorname{disc}(u)| < 4(u^3 + u^{-3} + 6)$$

[Hint: For fixed $c = \cos(\theta)$ maximize $(1 - c^2)(x - 2c)^2 - x^2$ where $x = r^3 + r^{-3}$.]

- iii. Show that $u^3 > |\operatorname{disc}(K)|/4 7$. Show that $\operatorname{disc}(K) = -1323$ and deduce that $u^3 > 323.75$. Show that $2 - \sqrt[3]{7} = u^{-k}$ for some k > 0 and deduce that $2 - \sqrt[3]{7}$ is a generator of the free part of \mathcal{O}_K^{\times} . [Feel free to use a calculator for the numerical estimates.]
- 4. Let m < 0 be square-free and consider $K = \mathbb{Q}(\sqrt{m})$. Recall from problem set 3 problem 2 how primes p in \mathbb{Q} split in K.
 - (a) Show that there is a multiplication map

$$\Phi: \bigoplus_{e_{\mathfrak{p}/p} > 1} (\mathbb{Z}/2\mathbb{Z})\mathfrak{p} \to \operatorname{Cl}(K)[2]$$

where $\operatorname{Cl}(K)[2] = \{I \in \operatorname{Cl}(K) | I^2 = 1\}$ and the map is

$$\Phi:\oplus e_i\mathfrak{p}_i\mapsto \prod \mathfrak{p}_i^{e_i}$$

- (b) Show that the kernel of the map Φ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ with generator $\oplus \mathfrak{p}$ where the sum is over $\mathfrak{p} \mid p \mid m$. [Hint: Use that m < 0 to show that (n, \sqrt{m}) is not principal for $n \mid m$ unless n = m. You will have to treat the cases $m \equiv 1, 2 \pmod{4}$ and $m \equiv 3 \pmod{4}$ separately.]
- (c) Suppose $I \in Cl(K)[2]$ has prime decomposition $\prod \mathfrak{q}_i^{a_i}$. Show that it cannot happen that every $\mathfrak{q}_i \mid p_i$ is unramified and each p_i is split in K. [Hint: Show that if $\prod \mathfrak{q}_i^{2a_i}$ is principal then it can be generated by $\prod p_i^{a_i}$ and deduce a contradiction from unique factorization using $p_i = \mathfrak{q}_i \overline{\mathfrak{q}}_i$.]
- (d) Deduce that Φ is surjective and therefore

$$|\operatorname{Cl}(K)[2]| = 2^{M-1}$$

where M is the number of primes p which ramify in K.

- 5. In this problem you will construct number fields whose rings of integers cannot be generated by few elements. Let $n \ge 2$ be an integer and let $K = \mathbb{Q}(\sqrt[n]{2})$ with ring of integers \mathcal{O}_K .
 - (a) Suppose $p \nmid 2[\mathcal{O}_K : \mathbb{Z}[\sqrt[n]{2}]]$ be a prime which splits completely in K. Show that $n \mid p-1$ and that $2^{(p-1)/n} \equiv 1 \pmod{p}$.
 - (b) Show that there exists a unique subfield $F \subset \mathbb{Q}(\zeta_p)$ with $[F : \mathbb{Q}] = n$.
 - (c) Let $\mathfrak{q} \mid 2$ be an ideal of $\mathbb{Z}[\zeta_p]$ and $\mathfrak{p} = \mathfrak{q} \cap F$. Show that the image of $\operatorname{Frob}_{\mathfrak{q}/2}$ in $G_{F/\mathbb{Q}}$ is $\operatorname{Frob}_{\mathfrak{p}/2}$ and deduce that $\operatorname{Frob}_{\mathfrak{p}/2} = 1$. [Hint: What is $\operatorname{Frob}_{\mathfrak{q}/2} \in G_{\mathbb{Q}(\zeta_p)/\mathbb{Q}} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$?]
 - (d) Deduce that 2 splits completely in F.
 - (e) Assume that $\mathcal{O}_F = \mathbb{Z}[\alpha_1, \ldots, \alpha_m]$. Show that we have induced ring homomorphisms

$$\mathbb{Z}[X_1,\ldots,X_m] \twoheadrightarrow \mathcal{O}_F \twoheadrightarrow \oplus_{\mathfrak{p}|2} k_{\mathfrak{p}/2}$$

where the *n* quotients $\mathbb{Z}[X_1, \ldots, X_m] \to k_{\mathfrak{p}/2} \cong \mathbb{F}_2$ are distinct.

(f) Show that there are at most 2^m distinct ring homomorphisms $\mathbb{Z}[X_1, \ldots, X_m] \to \mathbb{F}_2$ and deduce that \mathcal{O}_F cannot be generated as an algebra over \mathbb{Z} by fewer than $\lceil \log_2(n) \rceil$ elements. [Hint: where can X_i go under such a ring homomorphism?]

For example, p = 151 splits completely in $\mathbb{Q}(\sqrt[5]{2})$ and so 2 splits completely in $\mathbb{Q}(\zeta_{151})$. The subfield $F \subset \mathbb{Q}(\zeta_{151})$ of order 5 over \mathbb{Q} is the splitting field of the polynomial $X^5 + X^4 - 60X^3 - 12X^2 + 784X + 128$ and has ring of integers that cannot be generated by two elements. Can it be generated by 3 elements?

Moreover, for any *n* there exist infinitely many *p* which split completely in $\mathbb{Q}(\sqrt[n]{2})$ and so we have an infinite family of examples. I got this example from http://wstein.org/129-05/challenges.html