Math 80220 Algebraic Number Theory Problem Set 4

Andrei Jorza
due Wednesday, March 19

Do 3 of 5 problems.

1. Let K be a number field.
(a) Show that if I is an ideal there exists a number field L / K such that $I \mathcal{O}_{L}$ is principal. [Hint: some power of I must be principal.]
(b) Show that there exists a number field L / K such that every ideal of \mathcal{O}_{K} becomes principal in \mathcal{O}_{L}.
2. Let $f(X)=X^{3}-3 X+1$.
(a) Show that $f(X)$ is irreducible over \mathbb{Q} and has 3 real roots. Let $K=\mathbb{Q}(\alpha)$ where α is a root. Show that

$$
3^{n} \mathcal{O}_{K} \subset \mathbb{Z}[\alpha] \subset \mathcal{O}_{K}
$$

for some n. [Hint: show that the discriminant of $1, \alpha, \alpha^{2}$ is the same as the discriminant of f.]
(b) Show that $\alpha, \alpha+2$ are units and that $(\alpha+1)^{3}=3 \alpha(\alpha+2)$. What is the factorization of $(3) \mathcal{O}_{K}$ in \mathcal{O}_{K} ?
(c) Show that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]+(3) \mathcal{O}_{K}$. [Hint: what is $\mathcal{O}_{K} /(3)$?]
(d) Deduce that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. [Hint: if e_{1}, e_{2}, e_{3} is an integral basis for \mathcal{O}_{K} what can you say about the highest power of 3 in the denominators of e_{i} ?]
(e) Show that K has class number 1 .
(f) What is the subgroup $\mu_{K} \subset \mathcal{O}_{K}^{\times}$of roots of unity? [Hint: What is the degree of ζ_{n} over \mathbb{Q} ?]
(g) Show that α and $\alpha+2$ are independent in \mathcal{O}_{K}^{\times}. Are they a basis for the free part of \mathcal{O}_{K}^{\times}? [Hint: For the first part, show that the three roots lie in $(-2,-1),(0,1)$ and $(1,2)$ and if α and $\alpha+2$ have a dependence then the same is true for the other two roots. For the second part compute $1 /(\alpha+2)$.]
3. Let $K=\mathbb{Q}(\sqrt[3]{7})$ with $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{7}]$.
(a) Determine which integral primes p ramify in K and how.
(b) Find examples of unramified primes p with decomposition $(p) \mathcal{O}_{K}=\mathfrak{q}_{1} \ldots \mathfrak{q}_{r}$ in the following cases:
i. $r=3, f_{\mathfrak{q}_{i} / p}=1$;
ii. $r=2, f_{\mathfrak{q}_{1} / p}=1$ and $f_{\mathfrak{q}_{2} / p}=2$;
iii. $r=1, f_{\mathfrak{q}_{1} / p}=3$.
(c) Show that $\mathrm{Cl}(K) \cong \mathbb{Z} / 3 \mathbb{Z}$ generated by $(2, \sqrt[3]{7}+1)$. [Feel free to use a computer for multiplying fractional ideals.]
(d) Show that $2-\sqrt[3]{7}$ is a unit.
(e) Show that in fact $2-\sqrt[3]{7}$ generates the free part of \mathcal{O}_{K}^{\times}:
i. Suppose $u>1$ is a generator for the rank 1 abelian group \mathcal{O}_{K}^{\times}. Let $\sigma(u)=r e^{i \theta}$ and $\bar{\sigma}(u)$ be the two complex conjugates of u. Show that $u=r^{-2}$.
ii. Show that

$$
\operatorname{disc}\left(1, u, u^{2}\right)=-4 \sin ^{2}(\theta)\left(r^{3}+r^{-3}-2 \cos (\theta)\right)^{2}
$$

and deduce that

$$
|\operatorname{disc}(u)|<4\left(u^{3}+u^{-3}+6\right)
$$

[Hint: For fixed $c=\cos (\theta)$ maximize $\left(1-c^{2}\right)(x-2 c)^{2}-x^{2}$ where $x=r^{3}+r^{-3}$.]
iii. Show that $u^{3}>|\operatorname{disc}(K)| / 4-7$. Show that $\operatorname{disc}(K)=-1323$ and deduce that $u^{3}>323.75$. Show that $2-\sqrt[3]{7}=u^{-k}$ for some $k>0$ and deduce that $2-\sqrt[3]{7}$ is a generator of the free part of \mathcal{O}_{K}^{\times}. [Feel free to use a calculator for the numerical estimates.]
4. Let $m<0$ be square-free and consider $K=\mathbb{Q}(\sqrt{m})$. Recall from problem set 3 problem 2 how primes p in \mathbb{Q} split in K.
(a) Show that there is a multiplication map

$$
\Phi: \bigoplus_{e_{\mathfrak{p} / p}>1}(\mathbb{Z} / 2 \mathbb{Z}) \mathfrak{p} \rightarrow \mathrm{Cl}(K)[2]
$$

where $\mathrm{Cl}(K)[2]=\left\{I \in \mathrm{Cl}(K) \mid I^{2}=1\right\}$ and the map is

$$
\Phi: \oplus e_{i} \mathfrak{p}_{i} \mapsto \prod \mathfrak{p}_{i}^{e_{i}}
$$

(b) Show that the kernel of the map Φ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ with generator $\oplus \mathfrak{p}$ where the sum is over $\mathfrak{p}|p| m$. [Hint: Use that $m<0$ to show that (n, \sqrt{m}) is not principal for $n \mid m$ unless $n=m$. You will have to treat the cases $m \equiv 1,2(\bmod 4)$ and $m \equiv 3(\bmod 4)$ separately.]
(c) Suppose $I \in \mathrm{Cl}(K)[2]$ has prime decomposition $\prod \mathfrak{q}_{i}^{a_{i}}$. Show that it cannot happen that every $\mathfrak{q}_{i} \mid p_{i}$ is unramified and each p_{i} is split in K. [Hint: Show that if $\prod \mathfrak{q}_{i}^{2 a_{i}}$ is principal then it can be generated by $\prod p_{i}^{a_{i}}$ and deduce a contradiction from unique factorization using $p_{i}=\mathfrak{q}_{i} \overline{\mathfrak{q}}_{i}$.]
(d) Deduce that Φ is surjective and therefore

$$
|\mathrm{Cl}(K)[2]|=2^{M-1}
$$

where M is the number of primes p which ramify in K.
5. In this problem you will construct number fields whose rings of integers cannot be generated by few elements. Let $n \geq 2$ be an integer and let $K=\mathbb{Q}(\sqrt[n]{2})$ with ring of integers \mathcal{O}_{K}.
(a) Suppose $p \nmid 2\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt[n]{2}]\right]$ be a prime which splits completely in K. Show that $n \mid p-1$ and that $2^{(p-1) / n} \equiv 1(\bmod p)$.
(b) Show that there exists a unique subfield $F \subset \mathbb{Q}\left(\zeta_{p}\right)$ with $[F: \mathbb{Q}]=n$.
(c) Let $\mathfrak{q} \mid 2$ be an ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ and $\mathfrak{p}=\mathfrak{q} \cap F$. Show that the image of Frob $_{\mathfrak{q} / 2}$ in $G_{F / \mathbb{Q}}$ is Frob $\mathfrak{p}_{\mathfrak{p} / 2}$ and deduce that $\operatorname{Frob}_{\mathfrak{p} / 2}=1$. [Hint: What is $\operatorname{Frob}_{\mathfrak{q} / 2} \in G_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}} \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$?]
(d) Deduce that 2 splits completely in F.
(e) Assume that $\mathcal{O}_{F}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{m}\right]$. Show that we have induced ring homomorphisms

$$
\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \rightarrow \mathcal{O}_{F} \rightarrow \oplus_{\mathfrak{p} \mid 2} k_{\mathfrak{p} / 2}
$$

where the n quotients $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \rightarrow k_{\mathfrak{p} / 2} \cong \mathbb{F}_{2}$ are distinct.
(f) Show that there are at most 2^{m} distinct ring homomorphisms $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \rightarrow \mathbb{F}_{2}$ and deduce that \mathcal{O}_{F} cannot be generated as an algebra over \mathbb{Z} by fewer than $\left\lceil\log _{2}(n)\right\rceil$ elements. [Hint: where can X_{i} go under such a ring homomorphism?]

For example, $p=151$ splits completely in $\mathbb{Q}(\sqrt[5]{2})$ and so 2 splits completely in $\mathbb{Q}\left(\zeta_{151}\right)$. The subfield $F \subset \mathbb{Q}\left(\zeta_{151}\right)$ of order 5 over \mathbb{Q} is the splitting field of the polynomial $X^{5}+X^{4}-60 X^{3}-12 X^{2}+784 X+128$ and has ring of integers that cannot be generated by two elements. Can it be generated by 3 elements? Moreover, for any n there exist infinitely many p which split completely in $\mathbb{Q}(\sqrt[n]{2})$ and so we have an infinite family of examples. I got this example from http://wstein.org/129-05/challenges.html

