Math 80220 Algebraic Number Theory Problem Set 5

Andrei Jorza

due Wednesday, April 2

1. Consider the functions $\mathcal{B}(x)=\frac{x}{e^{x}-1}$ and $\mathcal{B}(x, z)=\frac{x e^{x z}}{e^{x}-1}$.
(a) Show that the Taylor expansion of $\mathcal{B}(x)$ around $x=0$ is of the form

$$
\frac{x}{e^{x}-1}=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

where $B_{n} \in \mathbb{Q}$ are such that $B_{2 k+1}=0$ if $k \geq 1$. The coefficients B_{n} are known as the Bernoulli numbers. [Hint: Show that $\mathcal{B}(x)+x / 2$ is even.]
(b) Show that " $B^{n}=(B+1)^{n}$ " is satisfied by the Bernoulli numbers in the sense that

$$
B_{n}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

when $n \neq 1$. [Hint: Compute the power series product $\mathcal{B}(x) \exp (x)$.]
(c) Show that $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}$ and $B_{4}=-\frac{1}{30}$. [Hint: work $\left(\bmod x^{2}\right)$ and then use the previous part.]
(d) Show that

$$
\mathcal{B}(x, z)=\sum_{n \geq 0} B_{n}(z) \frac{x^{n}}{n!}
$$

where $B_{n}(z)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} z^{k}$ are polynomials in z of degree n (called the Bernoulli polynomials).
(e) With B_{n} and $B_{n}(z)$ as above, show that for $n, m \geq 1$ (with the convention $0^{0}=1$) one has

$$
\begin{aligned}
\sum_{k=0}^{n-1} k^{m-1} & =\frac{B_{m}(n)-B_{m}}{m} \\
& =\frac{1}{m} \sum_{k=0}^{m-1}\binom{m}{k} B_{k} n^{m-k}
\end{aligned}
$$

[Hint: Take $\sum_{m \geq 1}(\cdot) \frac{x^{m}}{m!}$ of the above expressions and compare generating functions.]
2. (Optional, but you need the results for Problem 3) Consider the Euler Γ-function $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-x} d x$ and the Euler B-function $B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$.
(a) Show that $\Gamma(x+1)=x \Gamma(x)$ and conclude that $\Gamma(n)=(n-1)$! for $n \geq 1$.
(b) Show that $\Gamma(x) \Gamma(y)=\Gamma(x+y) B(x+y)$.
(c) You may assume that $B(x, y) B(x+y, 1-x)=\frac{\pi}{x \sin (\pi y)}$. Show that $\Gamma(1-z) \Gamma(z)=B(1-z, z)=$ $\frac{\pi}{\sin (\pi z)}$ and conclude that $\Gamma(1-n)=\frac{(-1)^{n+1} \pi}{(n-1)!}$.
(d) Show that

$$
B(x, y)=2 \int_{0}^{\pi / 2} \cos ^{2 x-1}(\theta) \sin ^{2 y-1}(\theta) d \theta
$$

[Hint: Change variables $x=\cos ^{2}(\theta)$.]
(e) Show that $B(z, z)=2^{2-2 z} \int_{0}^{1}\left(1-x^{2}\right)^{z-1} d x$. [Hint: Change variables $t=(1+x) / 2$.]
(f) Show that $\int_{0}^{1}\left(1-x^{2}\right)^{z-1} d x=B(1 / 2, z)$ and conclude that $B(z, z)=2^{1-2 z} B(1 / 2, z)$. [Hint: change variables $x=\cos (\theta)$ and use part 2d.]
(g) Show that $\Gamma(1 / 2)=\sqrt{\pi}$ and conclude that $\Gamma(z) \Gamma(z+1 / 2)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z)$. [Hint: Compute $B(1 / 2,1 / 2)$ and then use 2 f .]
(h) Deduce that $\Gamma(1 / 2-n)=\frac{(-4)^{n} n!\sqrt{\pi}}{(2 n)!}$.
3. Recall that

$$
\sin (z)=z \prod_{n \geq 1}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
$$

(a) Show that

$$
z \operatorname{cotan}(z)=1+2 \sum_{n=1}^{\infty} \frac{z^{2}}{z^{2}-n^{2} \pi^{2}}
$$

[Hint: Take logarithmic derivative of $\sin (z)$.]
(b) Show that

$$
z \operatorname{cotan}(z)=1+\sum_{n \geq 2}(2 i)^{n} B_{n} \frac{z^{n}}{n!}
$$

[Hint: Plug in $x=2 i z$ in $\mathcal{B}(x)$ and recall that $e^{i z}=\cos (z)+i \sin (z)$.]
(c) Show that

$$
\frac{z^{2}}{z^{2}-n^{2} \pi^{2}}=-\sum_{k \geq 1} \frac{z^{2 k}}{n^{2 k} \pi^{2 k}}
$$

and conclude that

$$
z \operatorname{cotan}(z)=1-2 \sum_{k \geq 1} \frac{z^{2 k} \zeta(2 k)}{\pi^{2 k}}
$$

(d) Deduce that for $n \geq 1$,

$$
\zeta(2 n)=\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

(e) Show that for $n \geq 1$

$$
\zeta(1-2 n)=-\frac{B_{2 n}}{2 n}
$$

and thus make sense of the famous expression

$$
1+2+3+\cdots=-\frac{1}{12}
$$

[Hint: Use the functional equation and the previous exercise (even if you didn't do the previous exercise).]
4. (a) Show that

$$
\pi \operatorname{cotan}(\pi z)=\frac{1}{z}+\sum_{n \geq 1}\left(\frac{1}{z+n}+\frac{1}{z-n}\right)
$$

[Hint: Use the previous exercise.]
(b) Writing $q=\exp (2 \pi i z)$ show that

$$
\pi \operatorname{cotan}(\pi z)=\pi i-2 \pi i \sum_{n=0}^{\infty} q^{n}
$$

[Hint: What are $\sin (\pi z)$ and $\cos (\pi z)$ in terms of q ?]
(c) Deduce that for $k \geq 2$

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(n+z)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} q^{n}
$$

[Hint: Differentiate the two expressions for $\pi \operatorname{cotan}(\pi z)$.]
(d) For $k \geq 1$ consider the expression $G_{2 k}(z)=\sum_{(m, n) \neq(0,0), m, n \in \mathbb{Z}} \frac{1}{(m z+n)^{2 k}}$. Show that

$$
G_{2 k}(z)=2 \zeta(2 k)+2 \sum_{m \geq 1, n \in \mathbb{Z}} \frac{1}{(m z+n)^{2 k}}
$$

and conclude that

$$
G_{2 k}(z)=2 \zeta(2 k)+\frac{2(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n}
$$

where $\sigma_{r}(n)=\sum_{d \mid n} d^{r}$.
(e) Show that $E_{2 k}=\frac{(2 k-1)!}{2(-2 \pi i)^{2 k}} G_{2 k}$ satisfies

$$
E_{2 k}=\frac{\zeta(1-2 k)}{2}+\sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n}
$$

and so is in $\mathbb{Q}[q]$.
(f) Show that $E_{12} \equiv \sum_{n \geq 1} \sigma_{11}(n) q^{n}(\bmod 691)$ and thus lies in $q \mathbb{F}_{691} \llbracket q \rrbracket$. (You may look up the Bernoulli number B_{12}.)
(g) (Optional) Show, directly from the definition, that if $a, b, c, d \in \mathbb{Z}$ such that $a d-b c=1$ then

$$
G_{2 k}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} G_{2 k}(z)
$$

Remark 1. Part 4 g shows that $G_{2 k}$ and $E_{2 k}$ are modular forms. Part 4 f implies one of the Ramanujan identities, that if $\tau(n)$ is the coefficient of q^{n} in $\Delta=q \prod_{n>1}\left(1-q^{n}\right)^{24}$ then $\tau(n) \equiv \sigma_{11}(n)(\bmod 691)$ (one shows that $\left.E_{12} \equiv \Delta(\bmod 691)\right)$ because both power series start with $q(\bmod 691)$).

