Math 80220 Algebraic Number Theory Problem Set 7

Andrei Jorza

due Wednesday, April 30

- 1. Let p > 2 be a prime number and $K = \mathbb{Q}(\zeta_p)$. Recall from the first homework that if $p^* = (-1)^{(p-1)/2}p$ then $\mathbb{Q}(\sqrt{p^*}) \subset K$.
 - (a) The group $G = \operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic and therefore so is its character group \widehat{G} . Denote χ a generator, taking a generator of G to ζ_{p-1} . Show that

$$\chi^{(p-1)/2}(x) = \left(\frac{x}{p}\right)$$

- (b) Show that if H is the subgroup of $G \cong \mathbb{Z}/(p-1)\mathbb{Z}$ corresponding to $\{0, 2, 4, \ldots, p-3\} \subset \{0, 1, 2, \ldots, p-2\}$ then the fixed subfield is $K^H = \mathbb{Q}(\sqrt{p^*})$. [Hint: Show that there is only one quadratic subfield of K.]
- (c) Show that the characters χ^k and $\chi^{k+(p-1)/2}$ are equal on H and conclude that the characters of $\operatorname{Gal}(\mathbb{Q}(\sqrt{p^*})/\mathbb{Q})$ are 1 and $(\frac{\cdot}{p})$. Deduce that

$$\tau\left(\left(\frac{\cdot}{p}\right)\right) = \sqrt{p^*}$$

[Hint: For the Gauss sum, use the result from class.]

(d) If $p \equiv 3 \pmod{4}$ show that

$$L\left(\left(\frac{\cdot}{p}\right), 1\right) = \begin{cases} \frac{\pi}{3\sqrt{3}} & p = 3\\ \frac{\pi h_{\mathbb{Q}}(\sqrt{-p})}{\sqrt{p}} & p > 3 \end{cases}$$

and conclude that

$$B_{1,\left(\frac{i}{p}\right)} = \begin{cases} -\frac{1}{3} & p = 3\\ -h_{\mathbb{Q}(\sqrt{-p})} & p > 3 \end{cases}$$

and thus that if p > 3 we have

$$h_{\mathbb{Q}(\sqrt{p^*})} = -\frac{1}{p} \sum_{k=1}^p \left(\frac{k}{p}\right) k$$

(e) If $p \equiv 1 \pmod{4}$ and $a + b\sqrt{p}$ is a generator for the unit group $\mathcal{O}_{\mathbb{Q}(\sqrt{p})}^{\times} = \mathbb{Z}[\frac{1+\sqrt{p}}{2}]^{\times}$ show that

$$L\left(\left(\frac{\cdot}{p}\right), 1\right) = \frac{2h_{\mathbb{Q}(\sqrt{p})}|\log|a + b\sqrt{p}||}{\sqrt{p}}$$

and conclude that

$$h_{\mathbb{Q}(\sqrt{p})} = -\frac{1}{2|\log|a+b\sqrt{p}||} \sum_{k=1}^{p} \left(\frac{k}{p}\right) \log|1-\zeta_{p}^{k}|$$

- 2. Let $K = \mathbb{Q}(\sqrt{3})$ and $\chi: K^{\times} \to \mathbb{C}^{\times}$ be $\chi(x) = \operatorname{sign} N_{K/\mathbb{Q}}(x)$.
 - (a) Show that $u \in \mathcal{O}_K^{\times}$ if and only if $N_{K/\mathbb{Q}}(u) = 1$ (i.e., no -1 can occur). Show that one may choose a generator $u = a + b\sqrt{3}$ of \mathcal{O}_K^{\times} such that a, b > 0. Deduce that $\mathcal{O}_K^{\times} = \pm (2 + \sqrt{3})^{\mathbb{Z}}$. [Hint: Show that $(a + b\sqrt{3})^k = 2 + \sqrt{3}$ would imply that $a \leq 2$ and $b \leq 1$.
 - (b) Show that if u is a unit in \mathcal{O}_K^{\times} then $\chi(xu) = \chi(x)$ and deduce that χ defined a character on the group of ideals of K.
 - (c) Show that $2\mathcal{O}_K = (1+\sqrt{3})^2$, $3\mathcal{O}_K = (\sqrt{3})^2$ and if p > 3 then p splits in \mathcal{O}_K if and only if $\left(\frac{3}{p}\right) = 1$. Show that if p splits with $p = u\overline{u}$ then $\chi(u) = \left(\frac{p}{3}\right)$.
 - (d) Deduce that

$$L(\chi, s) := \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{||\mathfrak{p}||^s} \right)^{-1} = L\left(\left(\frac{\cdot}{4}\right), s \right) L\left(\left(\frac{\cdot}{3}\right), s \right)$$

[Hint: Use Euler products and decide how a prime of \mathbb{Q} splits in K.]

- 3. (Optional) Let G be a finite abelian group and $f: G \to \mathbb{C}$ be any function.
 - (a) Show that the vector space V of functions from G to \mathbb{C} has the following sets as bases:

i. The set
$$\mathcal{B}_1$$
 of functions $\phi_g : G \to \mathbb{C}$ as $g \in G$ defined as $\phi_g(h) = \begin{cases} 1 & g = h \\ 0 & g \neq h \end{cases}$

- ii. The set \mathcal{B}_2 of characters $\chi \in \widehat{G}$.
- (b) Show that the linear transformation $T: V \to V$ defined by $(T\phi)(g) = \sum_{h \in G} f(g)\phi(gh)$ has matrix $(f(gh^{-1})_{g,h \in G}$ with respect to the basis \mathcal{B}_1 and is diagonal with respect to the basis \mathcal{B}_2 and conclude that

$$\det(f(gh^{-1})_{g,h\in G} = \prod_{\chi\in\widehat{G}}\sum_{g\in G}\chi(g)f(g)$$

- (c) Show that the vector subspace $W \subset V$ of functions ϕ such that $\sum_{g \in G} \phi(g) = 0$ has the following sets as bases:
 - i. The set \mathcal{B}'_1 of functions $\psi_g(h) = \phi_g(h) 1/|G|$.

ii. The set \mathcal{B}'_2 of characters $\chi \neq 1$.

(d) Show that the linear transformation T stabilizes W (i.e., T(W) = W) and with respect to the basis \mathcal{B}'_1 has matrix $(f(gh^{-1}) - f(g))_{g,h \neq 1}$ and is diagonal with respect to \mathcal{B}'_2 and deduce that

$$\det(f(gh^{-1}) - f(g))_{g,h \neq 1} = \prod_{\chi \neq 1} \sum_{g \in G} \chi(g) f(g)$$