Math 80220 Algebraic Number Theory Problem Set 7

Andrei Jorza

due Wednesday, April 30

1. Let $p>2$ be a prime number and $K=\mathbb{Q}\left(\zeta_{p}\right)$. Recall from the first homework that if $p^{*}=(-1)^{(p-1) / 2} p$ then $\mathbb{Q}\left(\sqrt{p^{*}}\right) \subset K$.
(a) The group $G=\operatorname{Gal}(K / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic and therefore so is its character group \widehat{G}. Denote χ a generator, taking a generator of G to ζ_{p-1}. Show that

$$
\chi^{(p-1) / 2}(x)=\left(\frac{x}{p}\right)
$$

(b) Show that if H is the subgroup of $G \cong \mathbb{Z} /(p-1) \mathbb{Z}$ corresponding to $\{0,2,4, \ldots, p-3\} \subset$ $\{0,1,2, \ldots, p-2\}$ then the fixed subfield is $K^{H}=\mathbb{Q}\left(\sqrt{p^{*}}\right)$. [Hint: Show that there is only one quadratic subfield of K.]
(c) Show that the characters χ^{k} and $\chi^{k+(p-1) / 2}$ are equal on H and conclude that the characters of $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt{p^{*}}\right) / \mathbb{Q}\right)$ are 1 and $(\dot{\bar{p}})$. Deduce that

$$
\tau\left(\left(\frac{\dot{p}}{p}\right)\right)=\sqrt{p^{*}}
$$

[Hint: For the Gauss sum, use the result from class.]
(d) If $p \equiv 3(\bmod 4)$ show that

$$
L\left(\left(\frac{\cdot}{p}\right), 1\right)= \begin{cases}\frac{\pi}{3 \sqrt{3}} & p=3 \\ \frac{\pi h_{\mathbb{Q}(\sqrt{-p})}}{\sqrt{p}} & p>3\end{cases}
$$

and conclude that

$$
B_{1,(\dot{\bar{p}})}= \begin{cases}-\frac{1}{3} & p=3 \\ -h_{\mathbb{Q}(\sqrt{-p})} & p>3\end{cases}
$$

and thus that if $p>3$ we have

$$
h_{\mathbb{Q}\left(\sqrt{p^{*}}\right)}=-\frac{1}{p} \sum_{k=1}^{p}\left(\frac{k}{p}\right) k
$$

(e) If $p \equiv 1(\bmod 4)$ and $a+b \sqrt{p}$ is a generator for the unit group $\mathcal{O}_{\mathbb{Q}(\sqrt{p})}^{\times}=\mathbb{Z}\left[\frac{1+\sqrt{p}}{2}\right]^{\times}$show that

$$
L((\dot{\cdot}), 1)=\frac{2 h_{\mathbb{Q}(\sqrt{p})}|\log | a+b \sqrt{p}| |}{\sqrt{p}}
$$

and conclude that

$$
h_{\mathbb{Q}(\sqrt{p})}=-\frac{1}{2|\log | a+b \sqrt{p}| |} \sum_{k=1}^{p}\left(\frac{k}{p}\right) \log \left|1-\zeta_{p}^{k}\right|
$$

2. Let $K=\mathbb{Q}(\sqrt{3})$ and $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$be $\chi(x)=\operatorname{sign} N_{K / \mathbb{Q}}(x)$.
(a) Show that $u \in \mathcal{O}_{K}^{\times}$if and only if $N_{K / \mathbb{Q}}(u)=1$ (i.e., no -1 can occur). Show that one may choose a generator $u=a+b \sqrt{3}$ of \mathcal{O}_{K}^{\times}such that $a, b>0$. Deduce that $\mathcal{O}_{K}^{\times}= \pm(2+\sqrt{3})^{\mathbb{Z}}$. [Hint: Show that $(a+b \sqrt{3})^{k}=2+\sqrt{3}$ would imply that $a \leq 2$ and $b \leq 1$.
(b) Show that if u is a unit in \mathcal{O}_{K}^{\times}then $\chi(x u)=\chi(x)$ and deduce that χ defined a character on the group of ideals of K.
(c) Show that $2 \mathcal{O}_{K}=(1+\sqrt{3})^{2}, 3 \mathcal{O}_{K}=(\sqrt{3})^{2}$ and if $p>3$ then p splits in \mathcal{O}_{K} if and only if $\left(\frac{3}{p}\right)=1$. Show that if p splits with $p=u \bar{u}$ then $\chi(u)=\left(\frac{p}{3}\right)$.
(d) Deduce that

$$
L(\chi, s):=\prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{\|\mathfrak{p}\|^{s}}\right)^{-1}=L\left(\left(\frac{\cdot}{4}\right), s\right) L\left(\left(\frac{\dot{3}}{3}\right), s\right)
$$

[Hint: Use Euler products and decide how a prime of \mathbb{Q} splits in K.]
3. (Optional) Let G be a finite abelian group and $f: G \rightarrow \mathbb{C}$ be any function.
(a) Show that the vector space V of functions from G to \mathbb{C} has the following sets as bases:
i. The set \mathcal{B}_{1} of functions $\phi_{g}: G \rightarrow \mathbb{C}$ as $g \in G$ defined as $\phi_{g}(h)=\left\{\begin{array}{ll}1 & g=h \\ 0 & g \neq h\end{array}\right.$.
ii. The set \mathcal{B}_{2} of characters $\chi \in \widehat{G}$.
(b) Show that the linear transformation $T: V \rightarrow V$ defined by $(T \phi)(g)=\sum_{h \in G} f(g) \phi(g h)$ has matrix $\left(f\left(g h^{-1}\right)_{g, h \in G}\right.$ with respect to the basis \mathcal{B}_{1} and is diagonal with respect to the basis \mathcal{B}_{2} and conclude that

$$
\operatorname{det}\left(f\left(g h^{-1}\right)_{g, h \in G}=\prod_{\chi \in \widehat{G}} \sum_{g \in G} \chi(g) f(g)\right.
$$

(c) Show that the vector subspace $W \subset V$ of functions ϕ such that $\sum_{g \in G} \phi(g)=0$ has the following sets as bases:
i. The set \mathcal{B}_{1}^{\prime} of functions $\psi_{g}(h)=\phi_{g}(h)-1 /|G|$.
ii. The set \mathcal{B}_{2}^{\prime} of characters $\chi \neq 1$.
(d) Show that the linear transformation T stabilizes W (i.e., $T(W)=W$) and with respect to the basis \mathcal{B}_{1}^{\prime} has matrix $\left(f\left(g h^{-1}\right)-f(g)\right)_{g, h \neq 1}$ and is diagonal with respect to \mathcal{B}_{2}^{\prime} and deduce that

$$
\operatorname{det}\left(f\left(g h^{-1}\right)-f(g)\right)_{g, h \neq 1}=\prod_{\chi \neq 1} \sum_{g \in G} \chi(g) f(g)
$$

