Math 80220 Algebraic Number Theory Problem Set 8

Andrei Jorza

Optional

1. Let K be a field. A polynomial $f \in K[X]$ is said to be additive if $f(X+Y)=f(X)+f(Y)$ is satisfied in $K[X, Y]$.
(a) If K has characteristic 0 show that the additive polynomials are the polynomials $f(X)=a X$ for some $a \in K$.
(b) If K has characteristic $p>0$ show that the additive polynomials are the polynomials

$$
f(X)=a_{0} X+a_{1} X^{p}+a_{2} X^{p^{2}}+\cdots a_{n} X^{p^{n}}
$$

[Hint: Show that $f^{\prime}(X)$ is constant.]
2. Let p be a prime and $q=p^{r}$ and let $K=\mathbb{F}_{q}(T)$ and let $\mathcal{O}=\mathbb{F}_{q}[T]$. Write $\mathcal{A}(K)$ for the set of additive polynomials. Let $\phi(x)=x^{q}$ be Frobenius in K and let $K\langle\phi\rangle$ be the set of polynomial expressions in ϕ (i.e., $a_{0}+a_{1} \phi+\cdots a_{k} \phi^{k}$) with usual addition and the unique noncommutative multiplication characterized by $\phi a=a^{q} \phi$ and usual multiplication of scalars.
(a) Show that the map $\Psi: \mathcal{A}(K) \rightarrow K\langle\phi\rangle$ given by $\sum_{i=0}^{n} a_{i} X^{p^{i}} \mapsto \sum_{i=0}^{n} a_{i} \phi^{i}$ satisfies $\Psi(f \circ g)=$ $\Psi(f) \Psi(g)$ and yields an isomorphism of (noncommutative) rings.
(b) A Drinfel'd module is a ring homomorphism $\rho: \mathcal{O} \rightarrow K\langle\phi\rangle$ such that for every polynomial $P(T)$, $\rho(P(T))$ has constant term $P(T)$ and $\operatorname{Im} \rho \not \subset K$. Show that for any polynomial $f \in K\langle\phi\rangle$ of degree r and with constant term 0 there exists a Drinfel'd module $\rho: \mathcal{O} \rightarrow K\langle\phi\rangle$ such that

$$
\rho(T):=T+f(\phi)
$$

Such a Drinfel'd module is said to have rank $r=\operatorname{deg} f$.
(c) Let $\rho: \mathcal{O} \rightarrow K\langle\phi\rangle$ be a rank 1 Drinfel'd module. Consider the \mathcal{O}-module \bar{K}_{ρ} whose underlying set is \bar{K} but with multiplication given by $a \cdot u:=\rho(a, u)$ where the polynomial $\rho(a)=f(\phi)$ acts on $u \in \bar{K}$ as

$$
\rho(a, u)=f(\phi)(u)
$$

via $\phi(u)=u^{q}$.
i. Show that indeed \bar{K}_{a} is an \mathcal{O}-module.
ii. Show that the set $\bar{K}_{\rho}[a]:=\left\{u \in \bar{K}_{\rho} \mid a \cdot u=0\right\}$ is an \mathcal{O}-module.
iii. Show that if $a \in \mathcal{O}$ is a polynomial of degree $d=\operatorname{deg} a$ and $u \in \bar{K}_{\rho}$ then

$$
\rho(a, u)=a u+\sum_{i=1}^{d} b_{i} u^{q^{i}}
$$

with $b_{d} \neq 0$ and $b_{i} \in K$ depend on a but not on u.
iv. Conclude the $\bar{K}_{\rho}[a]$ has $q^{\operatorname{deg} a}$ elements. [Hint: Recall that $a \cdot u=\rho(a, u)$ and show that this polynomial is separable.]
v. Show that as $\mathcal{O}=\mathbb{F}_{q}[T]$-modules we have $\bar{K}_{\rho}[a] \cong \mathcal{O} /(a)$. [Hint: \mathcal{O} is a PID and count the cardinality of $\mathcal{O} /(a)$.]
(d) Let ρ be a rank 1 Drinfel'd module and $a \in \mathbb{F}_{q}[T]$. Let K_{a} be the splitting field of the polynomial $\rho(a, X)$, i.e., the finite extension of K generated by the $q^{\operatorname{deg} a}$ elements of $\bar{K}_{\rho}[a] \subset \bar{K}$. Show that K_{a} / K is a finite Galois extension with Galois group

$$
\operatorname{Gal}\left(K_{a} / K\right) \subset \operatorname{Aut}\left(\bar{K}_{\rho}[a]\right) \cong(\mathcal{O} /(a))^{\times}
$$

[Hint: The Galois group permutes roots of polynomials.]
3. The Carlitz module is the Drinfel'd module $\rho: \mathcal{O} \rightarrow K\langle\phi\rangle$ with $\rho(T)=T+\phi$. From the previous exercise we know that for $a \in \mathbb{F}_{q}[T]$ the Galois group $\operatorname{Gal}\left(K_{a} / K\right)$ is a subgroup of $(\mathcal{O} /(a))^{\times}$. The goal of this exercise is to show that in fact $\operatorname{Gal}\left(K_{a} / K\right) \cong(\mathcal{O} /(a))^{\times}$(which we used to study irreducible polynomials in $\mathbb{F}_{q}[T]$ in arithmetic progressions).
(a) Suppose $a \in \mathbb{F}_{q}[T]$ has degree d and let $\zeta_{a} \in \bar{K}_{\rho}[a]$ whose image in $\mathcal{O} /(a)$ is a generator of the \mathcal{O}-module $\mathcal{O} /(a)$. Show that via the isomorphism $\bar{K}_{\rho}[a] \cong \mathcal{O} /(a)$ for $b \in \mathbb{F}_{q}[T]$ the element $b \cdot \zeta_{a}=\rho\left(b, \zeta_{a}\right)$ generates $\mathcal{O} /(a)$ if and only if $(a, b)=1$.
(b) Deduce that $K_{a}=K\left(\zeta_{a}\right)$ and that the number of such generators is $\varphi(a):=\left|(\mathcal{O} /(a))^{\times}\right|$. [Hint: The previous part shows that the elements of $\bar{K}_{\rho}[a]$ are of the form $\rho\left(b, \zeta_{a}\right)$.]
(c) Let $a, b \in \mathcal{O}$ coprime at let \mathcal{O}_{a} be the integral closure of \mathcal{O} in the field K_{a}. Show that $\zeta_{a} \in \mathcal{O}_{a}$ (this is where you use that $\rho(T)=T+\phi$) and that $\frac{b \cdot \zeta_{a}}{\zeta_{a}}$ is a unit in \mathcal{O}_{a}^{\times}. [Hint: Use the formula for $b \cdot \zeta_{a}$ and the fact that if $c b \equiv 1(\bmod a)$ then $c \cdot\left(b \cdot \zeta_{a}\right)=\zeta_{a}$.]
(d) Show that \mathcal{O} and \mathcal{O}_{a} are Dedekind domains. [Hint: For the first one show directly. For the second one you may use the fact that the integral closure of a Dedekind domain in a finite extension of its fraction field is again a Dedekind domain.]
(e) Suppose $a=P^{e} \in \mathcal{O}$ where P is an irreducible polynomial in $\mathcal{O}=\mathbb{F}_{q}[T]$.
i. Show that the polynomial

$$
\Phi_{a}(u)=\prod_{b \in(\mathcal{O} /(a))^{\times}}\left(u-b \cdot \zeta_{a}\right) \in \mathcal{O}[u]
$$

is equal to

$$
\Phi_{p^{e}}(u)=\frac{P^{e} \cdot u}{P^{e-1} \cdot u}
$$

[Hint: Show that the RHS is a polynomial of the same degree as the LHS and having as roots all the distinct roots of the LHS.]
ii. Conclude that $\prod_{(b, P)=1, \operatorname{deg}(b)<e \operatorname{deg}(P)} b \cdot \zeta_{a}=P$. [Hint: What is $\Phi_{P^{e}}(0)$?]
iii. Show that the ideal $(P) \mathcal{O}_{a}$ is equal to the ideal $\left(\zeta_{a}\right)^{\varphi\left(P^{e}\right)}$. [Hint: $b \cdot \zeta_{a}$ and ζ_{a} differ by a unit in $\left.\mathcal{O}_{a}^{\times}.\right]$
iv. Conclude that $\left[K_{P^{e}}: K\right] \geq \varphi\left(P^{e}\right)$ and thus that $\operatorname{Gal}\left(K_{P^{e}} / K\right) \cong\left(\mathcal{O} / P^{e}\right)^{\times}$and that P is totally ramified in \mathcal{O}_{a}. [Hint: In a Dedekind domain the ramification index is at most equal to the degree of the extension of fraction fields.]
v. Let $f(u)$ be the minimal polynomial over K of ζ_{a}. Show that $P^{e} \cdot u=f(u) g(u)$ for some $g \in \mathcal{O}[u]$ and that $P^{e}=f^{\prime}\left(\zeta_{a}\right) g\left(\zeta_{a}\right)$. [Hint: Look at the lowest degree monomials.]
vi. Recall that $\zeta_{a} \in \mathcal{O}_{a}$. Show that $f^{\prime}\left(\zeta_{a}\right) \in \mathcal{D}_{\mathcal{O}_{a} / \mathcal{O}}$ where $\mathcal{D}_{\mathcal{O}_{a} / \mathcal{O}}$ is the different $\left(\mathcal{D}_{\mathcal{O}_{a} / \mathcal{O}}^{-1}=\{x \in\right.$ $\left.\mathcal{O}_{a} \mid \operatorname{Tr}_{K_{a} / K}\left(x \mathcal{O}_{a}\right) \subset \mathcal{O}\right\}$). (In fact this is true for any extension of Dedekind domains.) [Hint: Show that the dual basis to $1, \zeta_{a}, \ldots, \zeta_{a}^{d-1}$ with respect to the trace pairing is given by the coefficients of the polynomial $\frac{f(u)}{\left(u-\zeta_{a}\right) f^{\prime}\left(\zeta_{a}\right)}$.]
vii. Deduce that every prime ideal in the different must divide P and thus that if $Q \in \mathcal{O}$ is an irreducible polynomial coprime to P then Q is unramified in \mathcal{O}_{a}. [Hint: Recall that the ramified primes are the primes dividing the different.]
(f) Now suppose that $a=\alpha P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}$ is the factorization of a into irreducibles, where $\alpha \in \mathbb{F}_{q}^{\times}$.
i. Write $a_{i}=a / P_{i}^{e_{i}}$. Show that $\zeta_{P_{i}^{e_{i}}}:=a_{i} \cdot \zeta_{a}$ is a generator of $\bar{K}_{\rho}\left[P_{i}^{e_{i}}\right]$.
ii. Show that K_{a} contains each $K_{P_{i}^{e_{i}}}$ and thus the compositum of these fields.
iii. Let $Q_{i} \in \mathcal{O}$ be such that $\sum P_{i} Q_{i}=1$. Show that $\zeta_{a}=\sum Q_{i} \cdot \zeta_{P_{i}^{e_{1}}}$ and deduce that $K_{a}=\prod K_{P_{i}^{e_{i}}}$ is the compositum.
iv. Show that $K_{P_{1}^{e_{1}} \cdots} K_{P_{e_{k}}^{e_{k}}}$ ramifies only at primes dividing P_{1}, \ldots, P_{k}. [Hint: If $A \subset B, C$ are dedekind domains if a prime of A is unramified in B and C then it is unramified in the compositum.]
v. Show that the only extension of K unramified at all primes is K itself.
vi. Show that $K_{P_{1}^{e_{1}}} \cdots K_{P_{e}^{e_{k}}} \cap K_{P_{k+1}}^{e_{k+1}}=K$.
vii. Deduce that $\operatorname{Gal}\left(K_{a} / K\right) \cong \prod_{i}\left(\mathcal{O} / P_{i}^{e_{i}}\right)^{\times} \cong(\mathcal{O} / a)^{\times}$.

