Math 80220 Algebraic Number Theory Problem Set 8

Andrei Jorza

Optional

- 1. Let K be a field. A polynomial $f \in K[X]$ is said to be *additive* if f(X + Y) = f(X) + f(Y) is satisfied in K[X, Y].
 - (a) If K has characteristic 0 show that the additive polynomials are the polynomials f(X) = aX for some $a \in K$.
 - (b) If K has characteristic p > 0 show that the additive polynomials are the polynomials

$$f(X) = a_0 X + a_1 X^p + a_2 X^{p^2} + \dots + a_n X^p$$

[Hint: Show that f'(X) is constant.]

- 2. Let p be a prime and $q = p^r$ and let $K = \mathbb{F}_q(T)$ and let $\mathcal{O} = \mathbb{F}_q[T]$. Write $\mathcal{A}(K)$ for the set of additive polynomials. Let $\phi(x) = x^q$ be Frobenius in K and let $K\langle\phi\rangle$ be the set of polynomial expressions in ϕ (i.e., $a_0 + a_1\phi + \cdots + a_k\phi^k$) with usual addition and the unique noncommutative multiplication characterized by $\phi a = a^q \phi$ and usual multiplication of scalars.
 - (a) Show that the map $\Psi : \mathcal{A}(K) \to K\langle \phi \rangle$ given by $\sum_{i=0}^{n} a_i X^{p^i} \mapsto \sum_{i=0}^{n} a_i \phi^i$ satisfies $\Psi(f \circ g) = \Psi(f)\Psi(g)$ and yields an isomorphism of (noncommutative) rings.
 - (b) A Drinfel'd module is a ring homomorphism $\rho : \mathcal{O} \to K\langle \phi \rangle$ such that for every polynomial P(T), $\rho(P(T))$ has constant term P(T) and $\operatorname{Im} \rho \not\subset K$. Show that for any polynomial $f \in K\langle \phi \rangle$ of degree r and with constant term 0 there exists a Drinfel'd module $\rho : \mathcal{O} \to K\langle \phi \rangle$ such that

$$\rho(T) := T + f(\phi)$$

Such a Drinfel'd module is said to have $rank r = \deg f$.

(c) Let $\rho : \mathcal{O} \to K\langle \phi \rangle$ be a rank 1 Drinfel'd module. Consider the \mathcal{O} -module \overline{K}_{ρ} whose underlying set is \overline{K} but with multiplication given by $a \cdot u := \rho(a, u)$ where the polynomial $\rho(a) = f(\phi)$ acts on $u \in \overline{K}$ as

$$\rho(a, u) = f(\phi)(u)$$

via $\phi(u) = u^q$.

- i. Show that indeed \overline{K}_a is an \mathcal{O} -module.
- ii. Show that the set $\overline{K}_{\rho}[a] := \{ u \in \overline{K}_{\rho} | a \cdot u = 0 \}$ is an \mathcal{O} -module.
- iii. Show that if $a \in \mathcal{O}$ is a polynomial of degree $d = \deg a$ and $u \in \overline{K}_{\rho}$ then

$$\rho(a,u) = au + \sum_{i=1}^{d} b_i u^{q^i}$$

with $b_d \neq 0$ and $b_i \in K$ depend on a but not on u.

- iv. Conclude the $\overline{K}_{\rho}[a]$ has $q^{\deg a}$ elements. [Hint: Recall that $a \cdot u = \rho(a, u)$ and show that this polynomial is separable.]
- v. Show that as $\mathcal{O} = \mathbb{F}_q[T]$ -modules we have $\overline{K}_{\rho}[a] \cong \mathcal{O}/(a)$. [Hint: \mathcal{O} is a PID and count the cardinality of $\mathcal{O}/(a)$.]
- (d) Let ρ be a rank 1 Drinfel'd module and $a \in \mathbb{F}_q[T]$. Let K_a be the splitting field of the polynomial $\rho(a, X)$, i.e., the finite extension of K generated by the $q^{\deg a}$ elements of $\overline{K}_{\rho}[a] \subset \overline{K}$. Show that K_a/K is a finite Galois extension with Galois group

$$\operatorname{Gal}(K_a/K) \subset \operatorname{Aut}(\overline{K}_{\rho}[a]) \cong (\mathcal{O}/(a))^{\times}$$

[Hint: The Galois group permutes roots of polynomials.]

- 3. The Carlitz module is the Drinfel'd module $\rho : \mathcal{O} \to K\langle \phi \rangle$ with $\rho(T) = T + \phi$. From the previous exercise we know that for $a \in \mathbb{F}_q[T]$ the Galois group $\operatorname{Gal}(K_a/K)$ is a subgroup of $(\mathcal{O}/(a))^{\times}$. The goal of this exercise is to show that in fact $\operatorname{Gal}(K_a/K) \cong (\mathcal{O}/(a))^{\times}$ (which we used to study irreducible polynomials in $\mathbb{F}_q[T]$ in arithmetic progressions).
 - (a) Suppose $a \in \mathbb{F}_q[T]$ has degree d and let $\zeta_a \in \overline{K}_\rho[a]$ whose image in $\mathcal{O}/(a)$ is a generator of the \mathcal{O} -module $\mathcal{O}/(a)$. Show that via the isomorphism $\overline{K}_\rho[a] \cong \mathcal{O}/(a)$ for $b \in \mathbb{F}_q[T]$ the element $b \cdot \zeta_a = \rho(b, \zeta_a)$ generates $\mathcal{O}/(a)$ if and only if (a, b) = 1.
 - (b) Deduce that $K_a = K(\zeta_a)$ and that the number of such generators is $\varphi(a) := |(\mathcal{O}/(a))^{\times}|$. [Hint: The previous part shows that the elements of $\overline{K}_{\rho}[a]$ are of the form $\rho(b, \zeta_a)$.]
 - (c) Let $a, b \in \mathcal{O}$ coprime at let \mathcal{O}_a be the integral closure of \mathcal{O} in the field K_a . Show that $\zeta_a \in \mathcal{O}_a$ (this is where you use that $\rho(T) = T + \phi$) and that $\frac{b \cdot \zeta_a}{\zeta_a}$ is a unit in \mathcal{O}_a^{\times} . [Hint: Use the formula for $b \cdot \zeta_a$ and the fact that if $cb \equiv 1 \pmod{a}$ then $c \cdot (b \cdot \zeta_a) = \zeta_a$.]
 - (d) Show that \mathcal{O} and \mathcal{O}_a are Dedekind domains. [Hint: For the first one show directly. For the second one you may use the fact that the integral closure of a Dedekind domain in a finite extension of its fraction field is again a Dedekind domain.]
 - (e) Suppose $a = P^e \in \mathcal{O}$ where P is an irreducible polynomial in $\mathcal{O} = \mathbb{F}_q[T]$.
 - i. Show that the polynomial

$$\Phi_a(u) = \prod_{b \in (\mathcal{O}/(a))^{\times}} (u - b \cdot \zeta_a) \in \mathcal{O}[u]$$

is equal to

$$\Phi_{p^e}(u) = \frac{P^e \cdot u}{P^{e-1} \cdot u}$$

[Hint: Show that the RHS is a polynomial of the same degree as the LHS and having as roots all the distinct roots of the LHS.]

- ii. Conclude that $\prod_{(b,P)=1, \deg(b) < e \deg(P)} b \cdot \zeta_a = P.$ [Hint: What is $\Phi_{P^e}(0)$?]
- iii. Show that the ideal $(P)\mathcal{O}_a$ is equal to the ideal $(\zeta_a)^{\varphi(P^e)}$. [Hint: $b \cdot \zeta_a$ and ζ_a differ by a unit in \mathcal{O}_a^{\times} .]
- iv. Conclude that $[K_{P^e} : K] \ge \varphi(P^e)$ and thus that $\operatorname{Gal}(K_{P^e}/K) \cong (\mathcal{O}/P^e)^{\times}$ and that P is totally ramified in \mathcal{O}_a . [Hint: In a Dedekind domain the ramification index is at most equal to the degree of the extension of fraction fields.]
- v. Let f(u) be the minimal polynomial over K of ζ_a . Show that $P^e \cdot u = f(u)g(u)$ for some $g \in \mathcal{O}[u]$ and that $P^e = f'(\zeta_a)g(\zeta_a)$. [Hint: Look at the lowest degree monomials.]

- vi. Recall that $\zeta_a \in \mathcal{O}_a$. Show that $f'(\zeta_a) \in \mathcal{D}_{\mathcal{O}_a/\mathcal{O}}$ where $\mathcal{D}_{\mathcal{O}_a/\mathcal{O}}$ is the different $(\mathcal{D}_{\mathcal{O}_a/\mathcal{O}}^{-1} = \{x \in \mathcal{O}_a | \operatorname{Tr}_{K_a/K}(x\mathcal{O}_a) \subset \mathcal{O}\})$. (In fact this is true for any extension of Dedekind domains.) [Hint: Show that the dual basis to $1, \zeta_a, \ldots, \zeta_a^{d-1}$ with respect to the trace pairing is given by the coefficients of the polynomial $\frac{f(u)}{(u-\zeta_a)f'(\zeta_a)}$.]
- vii. Deduce that every prime ideal in the different must divide P and thus that if $Q \in \mathcal{O}$ is an irreducible polynomial coprime to P then Q is unramified in \mathcal{O}_a . [Hint: Recall that the ramified primes are the primes dividing the different.]
- (f) Now suppose that $a = \alpha P_1^{e_1} \cdots P_r^{e_r}$ is the factorization of a into irreducibles, where $\alpha \in \mathbb{F}_a^{\times}$.
 - i. Write $a_i = a/P_i^{e_i}$. Show that $\zeta_{P_i^{e_i}} := a_i \cdot \zeta_a$ is a generator of $\overline{K}_{\rho}[P_i^{e_i}]$.
 - ii. Show that K_a contains each $K_{P_i^{e_i}}$ and thus the compositum of these fields.
 - iii. Let $Q_i \in \mathcal{O}$ be such that $\sum P_i Q_i = 1$. Show that $\zeta_a = \sum Q_i \cdot \zeta_{P_i^{e_1}}$ and deduce that $K_a = \prod K_{P_i^{e_i}}$ is the compositum.
 - iv. Show that $K_{P_1^{e_1}} \cdots K_{P_e^{e_k}}$ ramifies only at primes dividing P_1, \ldots, P_k . [Hint: If $A \subset B, C$ are dedekind domains if a prime of A is unramified in B and C then it is unramified in the compositum.]
 - v. Show that the only extension of K unramified at all primes is K itself.
 - vi. Show that $K_{P_1^{e_1}} \cdots K_{P_e^{e_k}} \cap K_{P_{k+1}}^{e_{k+1}} = K.$
 - vii. Deduce that $\operatorname{Gal}(K_a/K) \cong \prod_i (\mathcal{O}/P_i^{e_i})^{\times} \cong (\mathcal{O}/a)^{\times}$.