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Today: overview of fields. Textbook here is http://wstein.org/books/ant/ant.pdf

1 Fields
(1.1) A field K is a ring such that K − {0} = K× is the group of invertible elements. If L/K is a
finite extension of fields (i.e., L ⊃ K) then [L : K] = dimK L. If M/L/K are finite extensions then
[M : K] = [M : L][L : K].

(1.2) An element α is said to be algebraic over K is P (α) = 0 for some monic P ∈ K[X]. For α algebraic
the field K(α) is the minimal field containing both K and α. Every algebraic α has a minimal polynomial,
monic in K[X] obtained as the generator of the (proper) principal ideal in the PID K[X] consisting of all
polynomials which vanish at α, in which case [K(α) : K] equals the degree of this minimal polynomial.

Definition 1. A number field is defined to be a finite extension of Q.

For any finite extension L/K of fields of characteristic 0 or of finite fields there exists a so-called primitive
element α ∈ L such that L = K(α).

E.g., every quadratic extension L/K, by the quadratic formula, is of the form L = K(
√
α) for some

α ∈ K.

(1.3) An extension L/K is said to be algebraic if every element of L is algebraic over K.

Fact 2. An element α is algebraic over K if and only if K(α)/K is an algebraic extension if and only if
K(α)/K is a finite extension.

As an application we present:

Corollary 3. If α is algebraic of degree d then

K(α) = K[α] = {a0 + a1α+ · · ·+ ad−1α
d−1|ai ∈ K}

Proof. Every element of K(α) is of the form P (α)/Q(α). Write β = Q(α). Since α is algebraic it follows
that K(β) ⊂ K(α) is finite over K and so β is algebraic over K. Let b0 + b1X + · · ·+ bmX

m be its minimal
polynomial in which case b0 6= 0. Then

1/Q(α) = β−1 = −b−1
0 (b1 + b2β + · · · bmβm−1) ∈ K[β] ⊂ K[α]

Thus K(α) = K[α] and every polynomial of α can be reduced to a polynomial of degree at most d − 1 of
alpha using the minimal polynomial of α over K.

Every field K has an algebraic closure K which is algebraically closed. If L is any algebraically closed
field (such as C) containing K then there is a unique algebraic closure K ⊂ L consisting of all the elements
of L which are algebraic over K. This is how we will think of Q as the closure of Q in C.
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(1.4) Embeddings. A number field K/Q can sit inside Q ⊂ C in more than one way. For example, Q(i)→ C
given by a + bi 7→ a ± bi provides two distinct embeddings (i.e., injective homomorphisms) of fields which
invary Q.

Fact 4. If α is algebraic with minimal polynomial f(X) over K then the embeddings of K(α) into K which
fix K are parametrized by the roots of f(X). If β is any root the associated embedding fixes K and takes
α to β. This produces a unique isomorphism K(α) ∼= K(β).

Theorem 5. If L/K is finite there are exactly [L : K] embeddings L→ K fixing K.
If M/L/K are finite extensions and αi are the embeddings of L into K fixing K and τj are the embeddings

of M into L = K fixing L then the embeddings of M into K fixing K are σiτj.

2 Number Rings
(2.1)

Definition 6. An algebraic integer is an element α satisfying P (α) = 0 for some monic P ∈ Z[X]. For a
number field K we write OK for the set of algebraic integers in K.

Recall Gauss’ lemma that if P ∈ Z[X] is monic and irreducible in Z[X] then P is irreducible in Q[X].

(2.2)

Proposition 7. An element α is an algebraic integer if and only if Z[α] is a finite Z-module.

Proof. Done in class. See textbook Proposition 2.3.4

Corollary 8. If α, β are algebraic integers then α± β, α · β are algebraic integers.

Proof. Done in class. See textbook Proposition 2.3.5

The conclusion is that the set OK of algebraic integers in the number field K is in fact a ring.
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