Introduction to Algebraic Number Theory Lecture 2

Andrei Jorza

$$
2014-01-17
$$

Today: overview of fields. Textbook here is http://wstein.org/books/ant/ant.pdf

1 Fields

(1.1) A field K is a ring such that $K-\{0\}=K^{\times}$is the group of invertible elements. If L / K is a finite extension of fields (i.e., $L \supset K$) then $[L: K]=\operatorname{dim}_{K} L$. If $M / L / K$ are finite extensions then $[M: K]=[M: L][L: K]$.
(1.2) An element α is said to be algebraic over K is $P(\alpha)=0$ for some monic $P \in K[X]$. For α algebraic the field $K(\alpha)$ is the minimal field containing both K and α. Every algebraic α has a minimal polynomial, monic in $K[X]$ obtained as the generator of the (proper) principal ideal in the PID $K[X]$ consisting of all polynomials which vanish at α, in which case $[K(\alpha): K]$ equals the degree of this minimal polynomial.
Definition 1. A number field is defined to be a finite extension of \mathbb{Q}.
For any finite extension L / K of fields of characteristic 0 or of finite fields there exists a so-called primitive element $\alpha \in L$ such that $L=K(\alpha)$.
E.g., every quadratic extension L / K, by the quadratic formula, is of the form $L=K(\sqrt{\alpha})$ for some $\alpha \in K$.
(1.3) An extension L / K is said to be algebraic if every element of L is algebraic over K.

Fact 2. An element α is algebraic over K if and only if $K(\alpha) / K$ is an algebraic extension if and only if $K(\alpha) / K$ is a finite extension.

As an application we present:
Corollary 3. If α is algebraic of degree d then

$$
K(\alpha)=K[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{d-1} \alpha^{d-1} \mid a_{i} \in K\right\}
$$

Proof. Every element of $K(\alpha)$ is of the form $P(\alpha) / Q(\alpha)$. Write $\beta=Q(\alpha)$. Since α is algebraic it follows that $K(\beta) \subset K(\alpha)$ is finite over K and so β is algebraic over K. Let $b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ be its minimal polynomial in which case $b_{0} \neq 0$. Then

$$
1 / Q(\alpha)=\beta^{-1}=-b_{0}^{-1}\left(b_{1}+b_{2} \beta+\cdots b_{m} \beta^{m-1}\right) \in K[\beta] \subset K[\alpha]
$$

Thus $K(\alpha)=K[\alpha]$ and every polynomial of α can be reduced to a polynomial of degree at most $d-1$ of alpha using the minimal polynomial of α over K.

Every field K has an algebraic closure \bar{K} which is algebraically closed. If L is any algebraically closed field (such as \mathbb{C}) containing K then there is a unique algebraic closure $\bar{K} \subset L$ consisting of all the elements of L which are algebraic over K. This is how we will think of $\overline{\mathbb{Q}}$ as the closure of \mathbb{Q} in \mathbb{C}.
(1.4) Embeddings. A number field K / \mathbb{Q} can sit inside $\overline{\mathbb{Q}} \subset \mathbb{C}$ in more than one way. For example, $\mathbb{Q}(i) \rightarrow \mathbb{C}$ given by $a+b i \mapsto a \pm b i$ provides two distinct embeddings (i.e., injective homomorphisms) of fields which invary \mathbb{Q}.

Fact 4. If α is algebraic with minimal polynomial $f(X)$ over K then the embeddings of $K(\alpha)$ into \bar{K} which fix K are parametrized by the roots of $f(X)$. If β is any root the associated embedding fixes K and takes α to β. This produces a unique isomorphism $K(\alpha) \cong K(\beta)$.

Theorem 5. If L / K is finite there are exactly $[L: K]$ embeddings $L \rightarrow \bar{K}$ fixing K.
If $M / L / K$ are finite extensions and α_{i} are the embeddings of L into \bar{K} fixing K and τ_{j} are the embeddings of M into $\bar{L}=\bar{K}$ fixing L then the embeddings of M into \bar{K} fixing K are $\sigma_{i} \tau_{j}$.

2 Number Rings

(2.1)

Definition 6. An algebraic integer is an element α satisfying $P(\alpha)=0$ for some monic $P \in \mathbb{Z}[X]$. For a number field K we write \mathcal{O}_{K} for the set of algebraic integers in K.

Recall Gauss' lemma that if $P \in \mathbb{Z}[X]$ is monic and irreducible in $\mathbb{Z}[X]$ then P is irreducible in $\mathbb{Q}[X]$.

Proposition 7. An element α is an algebraic integer if and only if $\mathbb{Z}[\alpha]$ is a finite \mathbb{Z}-module.
Proof. Done in class. See textbook Proposition 2.3.4
Corollary 8. If α, β are algebraic integers then $\alpha \pm \beta, \alpha \cdot \beta$ are algebraic integers.
Proof. Done in class. See textbook Proposition 2.3.5
The conclusion is that the set \mathcal{O}_{K} of algebraic integers in the number field K is in fact a ring.

