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Today: traces and norms, discriminants and integral bases. Textbook here is http://wstein.org/books/ant/ant.pdf

3 Trace and Norm (continued)
(3.3)

Proposition 1. If M/L/K are number fields then TrM/K = TrL/K ◦TrM/L and NM/K = NL/K ◦NM/L.

Proof. Done in class. See textbook Corollary 2.4.4.

(3.4) The trace pairing. Define (·, ·)L/K : L× L→ K by (x, y)L/K = TrL/K(xy). It is a K-bilinear form.

Proposition 2. The trace pairing is nondegenerate, i.e., if (x, y) = 0 for all y then x = 0.

Proof. Too short to give reference. If x 6= 0 then (x, x−1)L/K = TrL/K(1) = [L : K] 6= 0 as number fields
have characteristic 0.

(3.5) Discriminants.

Definition 3. Suppose L/K is a finite extension of fields. If α1, . . . , αn ∈ L define

discL/K(α1, . . . , αn) = det((αi, αj)L/K)i,j ∈ K

Proposition 4. Suppose [L : K] = n. Then

1. discL/K(α1, . . . , αn) = det(σi(αj))
2
i,j where σ1, . . . , σn are the embeddings L→ K fixing K.

2. discL/K(α1, . . . , αn) 6= 0 if and only if α1, . . . , αn form a basis of L/K.

3. If αi ∈ OL then discL/K(α1, . . . , αn) ∈ OK .

Proof. Done in class. For part (i) see textbook the first paragraph of §6.2. Part (ii) follows from the fact that
the trace pairing is nondegenerate, again at the beginning of §6.2 in the textbook. Finally, if αi ∈ OL then
(αi, αj)L/K ∈ OK and so the discriminant is in OK since it is the determinant of a matrix with coefficients
in OK .

(3.6) Integral bases. First, recollections on finitely generated abelian groups. If A is a finitely generated
abelian group then

A ∼= Zd ⊕
⊕

Z/niZ

and d = rank(A) is the rank of A. If B is a finitely generated abelian group and A ⊂ B is a subgroup then
A is also finitely generated and rank(A) ≤ rank(B).

Theorem 5. Let K be a number field. The following statements are all equivalent and true:
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1. OK is a finite Z-module of rank [K : Q].

2. OK ⊂ K is a full lattice.

3. OK = Zα1 + Zα2 + · · · + Zαn where n = [K : Q]. In that case α1, . . . , αn is said to be an integral
basis.

Proof. Part (ii) is by definition the same as part (i) while part (iii) is part (i) by the theory of finitely
generated abelian groups. We will prove part (i).

Pick any basis β1, . . . , βn of K/Q. Since for any x ∈ K there exists m ∈ Z such that xn ∈ OK (if
dkx

k + dk−1x
k−1 + · · · = 0 then (dkx)k + dk−1(dkx)k−1 + dk−2dk(dkx)k−2 + · · · = 0 and so dkx ∈ OK) we

may rescale the βi such that βi ∈ OK .
Suppose α =

∑
riβi with ri ∈ Q. Then (α, βj)K/Q =

∑
ri(βi, βj)K/Q which can be rewritten as a matrix

multiplication ((βi, βj)K/Q)i,j(ri) = ((α, βi)K/Q). Solving using Cramer’s rule shows that ri is a ratio of a
determinant of a matrix with coefficients in OQ = Z by det((βi, βj)K/Q)i,j = D = discK/Q(β1, . . . , βn). Thus

ri ∈ 1
DZ which implies that

OK ⊂
∑ βi

D
Z

and so OK is a finitely generated abelian group with rank(OK) ≤ [K : Q]. But at the same time∑
Zβi ⊂ OK

and so n ≤ rank(OK) and the theorem follows.

(3.7) Discriminant of a number field.

Definition 6. Suppose K is a number field and α1, . . . , αn is an integral basis of OK/Z. Define

disc(K) = disc(OK) = discK/Q(α1, . . . , αn)

Note that if β1, . . . , βn is another integral basis then there exists a matrix B ∈ GL(n,Z) such that
(βi) = B(αi) and so

disc(βi) = det(B)2 disc(αi)

Since detB = ±1 ∈ Z× it follows that the above definition is independent of the chosen integral basis.

Example 7. 1. The discriminant of Q( m
√

) is 4m if m ≡ 2, 3 (mod 4) and m if m ≡ 1 (mod 4).

2. If m ≡ 1 (mod 9) then the discriminant of Q( 3
√
m) (see the first problem set for the ring of integers)

is −3m2. Also, see the Sage page on the website for Sage code proving this fact.
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