Introduction to Algebraic Number Theory
 Lecture 5

Andrei Jorza

2014-01-24

Today: traces and norms, discriminants and integral bases. Textbook here is http://wstein.org/books/ant/ant.pdf

3 Trace and Norm (continued)

Proposition 1. Let $p>2$ be prime. Then the ring of integers of $\mathbb{Q}\left(\zeta_{p}\right)$ is $\mathbb{Z}\left[\zeta_{p}\right]$. In fact for any positive integer n the ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.
Proof. Only did in class the case of p prime. First, note that $\mathbb{Z}\left[\zeta_{p}\right]=\mathbb{Z}\left[1-\zeta_{p}\right]$ as a basis of the LHS over \mathbb{Z} is $1, \zeta_{p}, \ldots, \zeta_{p-2}$ while of the RHS is $1,1-\zeta_{p},\left(1-\zeta_{p}\right)^{2}, \ldots,\left(1-\zeta_{p}\right)^{p-2}$ and it's clear one can go from the LHS basis to the RHS basis using a lower-triangular matrix with 1-s on the diagonal. This matrix is then invertible in $\mathrm{GL}(p-1, \mathbb{Z})$ and so the two bases are equivalent.

From one of the problems on problem set 1 you computed that ($K=\mathbb{Q}\left(\zeta_{p}\right)$)

$$
\operatorname{disc}_{K / \mathbb{Q}}\left(1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}\right)=(-1)^{(p-1) / 2} p^{p-2}
$$

But this discriminant (as shown in class) is independent of a \mathbb{Z}-basis and so it is also equal to $D=$ $\operatorname{disc}_{K / \mathbb{Q}}\left(1,1-\zeta_{p},\left(1-\zeta_{p}\right)^{2}, \ldots,\left(1-\zeta_{p}\right)^{p-2}\right)$.

We have show in class that if $\alpha=a_{0}+a_{1}\left(1-\zeta_{p}\right)+\cdots+a_{p-2}\left(1-\zeta_{p}\right)^{p-2} \in \mathcal{O}_{K}$ then $D a_{i} \in \mathbb{Z}$ and so we may write

$$
\alpha=\frac{m_{0}+m_{1}\left(1-\zeta_{p}\right)+\cdots+m_{p-2}\left(1-\zeta_{p}\right)^{p-2}}{p^{p-2}} \in \mathcal{O}_{K}
$$

If $\alpha \notin \mathbb{Z}\left[\zeta_{p}\right]=\mathbb{Z}\left[1-\zeta_{p}\right]$ then the coefficients m_{i} are not all divisible by p^{p-2}. In fact we may cancel out any common factor of p among the m_{i} and write

$$
\alpha=\frac{m_{0}+m_{1}\left(1-\zeta_{p}\right)+\cdots+m_{p-2}\left(1-\zeta_{p}\right)^{p-2}}{p^{k}}
$$

where not all m_{0} are divisible by p and $k \leq p-2$. Let i be the smallest index such that $p \nmid m_{i}$. Then

$$
\beta=p^{a-1} \alpha-\frac{m_{0}+m_{1}\left(1-\zeta_{p}\right)+\cdots+m_{i-1}\left(1-\zeta_{p}\right)^{i-1}}{p}=\frac{m_{i}\left(1-\zeta_{p}\right)^{i}+\cdots+m_{p-2}\left(1-\zeta_{p}\right)^{p-2}}{p}
$$

is also in \mathcal{O}_{K} since $\mathbb{Z}\left[\zeta_{p}\right] \subset \mathcal{O}_{K}$.
Note that $N_{K / \mathbb{Q}}\left(1-\zeta_{p}\right)=\left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{2}\right) \cdots\left(1-\zeta_{p}^{p-1}\right)=1^{p-1}+1^{p-2}+\cdots+1+1=p$. Since $1-\zeta_{p} \mid 1-\zeta_{p}^{i}$ (here $a \mid b$ means $b / a \in \mathcal{O}_{K}$) it follows that $\left(1-\zeta_{p}\right)^{p-1} \mid p$. Now

$$
p \beta=m_{i}\left(1-\zeta_{p}\right)^{i}+\cdots+m_{p-2}\left(1-\zeta_{p}\right)^{p-2}
$$

in \mathcal{O}_{K}. If $i<p-2$ then note that $\left(1-\zeta_{p}\right)^{i+1}\left|\left(1-\zeta_{p}\right)^{p-2}\right| p$ and so we deduce that $1-\zeta_{p} \mid m_{i}$. But $1-\zeta_{p} \mid p$ and since $p \nmid m_{i}$ it follows that we can find $u, v \in \mathbb{Z}$ such that $m_{i} a+p b=1$ which would imply
that $1-\zeta_{p} \mid 1$. But then $1 /\left(1-\zeta_{p}\right) \in \mathcal{O}_{K}$ which is impossible because then $N_{K / \mathbb{Q}}\left(1 /\left(1-\zeta_{p}\right)\right)=1 / p$ would be an integer. Thus we get a contradiction. If $i=p-2$ then $p \beta=m_{p-2}\left(1-\zeta_{p}\right)^{p-2}$ which would imply that $1-\zeta_{p} \mid m_{p-2}$ yielding a contradiction as before.

The conclusion is that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$ as desired.

4 Unique factorizations in Dedekind domains

(4.1)

Definition 2. A ring R is said to be noetherian if every increasing chain of ideals $I_{1} \subset I_{2} \subset \ldots$ stabilizes, i.e., $I_{n}=I_{n+1}=\cdots$ for $n \gg 0$. A module M / R is noetherian if every chain of R-submodules $M_{1} \subset M_{2} \subset \ldots$ stabilizes.

Example 3. $\mathbb{Z}, F[X]$ are noetherian because ideals are principal. The ring $\overline{\mathbb{Z}}$ is not noetherian because $(2) \subset\left(2^{1 / 2}\right) \subset\left(2^{1 / 4}\right) \subset \ldots$ doesn't stabilize.

Fact 4. 1. Quotients of noetherian rings are noetherian.
2. (Hilbert basis theorem) If R is noetherian then $R\left[X_{1}, \ldots, X_{n}\right]$ is noetherian.
3. The noetherian modules over a noetherian ring are precisely the finitely generated ones.

Remark 1. The main use of the noetherian condition is the following. Suppose \mathcal{P} is a set of ideals (defined, say, by having a certain property). If R is noetherian then every ideal in \mathcal{P} is contained in an ideal in \mathcal{P} which is maximal in \mathcal{P}, i.e., it is not contained in any bigger ideal in \mathcal{P}. Indeed, if $I_{1} \subset I_{2} \subset \ldots$ is a chain of ideals in \mathcal{P} then it stabilizes and the "limit" is necessarily in \mathcal{P}. Thus Zorn's lemma implies that every ideal is contained in an ideal of \mathcal{P} which is maximal. We will use this many times.

(4.2)

Definition 5. If R is an integral domain and K is its fraction field, a fractional ideal of R is a finitely generated R-submodule of K.

Note that finite generation implies that if I is a fractional ideal then there exists $\alpha \in R$ such that $\alpha I \subset R$, i.e., is an ideal of R.

Example 6. $\frac{m}{n} \mathbb{Z}$ is a fractional ideal of \mathbb{Z}. Similarly $\frac{P(X)}{Q(X)} F[X]$ is a fractional ideal of $F[X]$ where F is any field.

Definition 7. We define a multiplication law on fractional ideals given by $I J=\left\{\sum x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J\right\}$. Note that $I R=I$ for every fractional ideal I of R. With respect to this multiplication and unit a fractional ideal I is invertible if there exists a fractional ideal I^{-1} such that $I I^{-1}=R$.

For example $\left(\frac{m}{n} \mathbb{Z}\right)^{-1}=\frac{n}{m} \mathbb{Z}$.

Definition 8. An integral domain R is said to be a Dedekind domain if

1. R is noetherian
2. R is integrally closed (i.e., in its fraction field K)
3. Every prime ideal of R is maximal.

Example 9. \mathbb{Z} and $\mathbb{F}_{p}[X]$ are Dedekind domains. The algebraic integers $\overline{\mathbb{Z}}$ is not because it is not noetherian. The ring $\mathbb{Z}[\sqrt{5}]$ is not because it is not integrally closed. The ring $\mathbb{Z}[X]$ is noetherian and integrally closed but the prime ideal (X) is not maximal because $\mathbb{Z}[X] /(X) \cong \mathbb{Z}$ is an integral domain which is not a field. Thus $\mathbb{Z}[X]$ is not a Dedekind domain.

