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Today: traces and norms, discriminants and integral bases. Textbook here is http://wstein.org/books/ant/ant.pdf

4 Dedekind domains
(4.6) We are ready for unique factorization in Dedekind domains. For clarity, start with a lemma.

Lemma 1. Suppose R is a Dedekind domain and I, J are fractional ideals. If I = IJ then J ⊂ R.

Proof. We already did this implicitly in the prood of the fact that every ideal is invertible. Here is a sketch:
The fractional ideal I is finitely generated over Z and so I = ⊕Zαi for some αi. If x ∈ J then x acting

by multiplication on I (since I = IJ) has xαi =
∑
mijαj and so multiplication by x on I is the same

as multiplication on ⊕Zαi by the matrix (mij) ∈ Mn×n(Z). Multiplication by x thus satisfies, by Cayley-
Hamilton, the characteristic polynomial of (mij) which is monic in Z[X] and so x will be integral over Z.
But R is integrally closed and so x ∈ R. Thus J ⊂ R.

Theorem 2. Suppose R is a Dedekind domain. Then every fractional ideal I can be written uniquely (up
to permutations) as a product

∏
i p

ni
i where ni ∈ Z and pi are prime ideals.

Proof. This is textbook Theorem 3.1.11
First, note that the case of fractional ideals can be reduced to that of ideals by multiplication. Next, if∏
pi =

∏
qj then

∏
pi ⊂ qj for each j. Thus by the observation at the end of the previous lecture it follows

that pi = qj for some i. Multiplying
∏

pi =
∏

qj by the inverse of pi = qj yields an equality of products
of prime ideals containing fewer factors in each product. Repeating the argument proves the fact that the
prime ideals pi and qj are permutations of each other.

For existence, if not every ideal is a product of primes ideals then there exists a maximal I which is not
a product of prime ideals by the noetherian property. The trivial ideal R is a trivial product of primes and
so I ⊂ p ⊂ R where p is some prime ideal (every ideal is contained in a maximal ideal!) Therefore p | I and
so Ip−1 ⊂ R is an ideal. If I = Ip−1 then the above lemma implies that p−1 ⊂ R and of course this would
imply that R ⊂ p which is false. Thus I ( Ip−1 and by maximality of I it follows that Ip−1 is invertible
and I−1 = p−1(Ip−1)−1.

(4.7) The Chinese Remainder Theorem.

Proposition 3. 1. Suppose ni are pairwise coprime integers and ai ∈ Z. Then there exists a ∈ Z such
that a ≡ qi (mod ni). Equivalently,

Z/
∏

niZ ∼=
∏

Z/niZ

2. If R is any commutative ring with unit and Ii are pairwise coprime ideals of R (i.e., if i 6= j then
Ii + Ij = R), then

R/
∏

Ii ∼=
∏

R/Ii
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Proof. Done in class, see textbook §5.1.1

(4.8) Generators for fractional ideals in Dedekind domains.

Lemma 4. Suppose R is a Dedekind domain and I, J are two ideals. Then there exists a ∈ I such that
(a)I−1 and J are coprime.

Proof. Done in class, see textbook Lemma 5.2.2.

Theorem 5. If R is a Dedekind domain then every fractional ideal is generated by 2 elements.

Proof. It suffices to show this for ideals since fractional ideals are scalar multiples of ideals. Suppose a ∈ I
is nonzero. Then the lemma above implies the existence of b ∈ I such that (b)I−1 and (a) are coprime. Now
a, b ∈ I and so (a, b) ⊂ I where (a, b) = (a) + (b) is the ideal generated by (a) and (b). Thus I | (a, b).
If pn | (a, b) | (a), (b) it follows that pn | (a) and pn | (b). The ideals (a) and (b)I−1 are coprime and so
p - (b)I−1. Thus the power of p in (b) equals the power of p in I and so pn | I. Thus (a, b) | I and we
conclude that I = (a, b) is generated by two elements.

2


