Introduction to Algebraic Number Theory
 Lecture 8

Andrei Jorza

2014-01-31

Today: Unique factorization domains, primes under extensions. Textbook here is http://wstein.org/books/ant/ant.pd

4 Dedekind domains (continued)

(4.9) The classical theory of unique factorization.

Definition 1. In an integral domain R an element x is said to be irreducible if it cannot be written as $x=y z$ with $y, z \in R$ non-units. The integral domain R is said to be a unique factorization domain (UFD) if every $x \in R$ can be written uniquely (up to units and permutations) as a product of irreducible elements.

Example 2. \quad 1. $\mathbb{Z}, F[X]$ for F a field and $\mathbb{Z}[X]$ are UFD but (cf. homework 2) $\mathbb{Z}[\sqrt{-13}]$ is not.
2. In fact if R is a UFD then $R[X]$ is a UFD.

Remark 1. If (x) is a prime ideal in R then x is irreducible (else $x=y z$ and so $(x) \mid(y)$ or $(x) \mid(z)$; in the first case deduce that z is a unit). However, the converse is not true. Indeed, $a=2+\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ has norm $N_{\mathbb{Q}(\sqrt{-5}) / \mathbb{Q}}(a)=9$ and if $a=x y$ then $N_{K / \mathbb{Q}}(x) N_{K / \mathbb{Q}}(y)=9$. Since $N_{K / \mathbb{Q}}(x)=x \bar{x}$ it follows that x is a unit if and only if $N_{K / \mathbb{Q}}(x)=1$ and so if x and y are not units it must be that $N_{K / \mathbb{Q}}(x)=3$. But $N_{K / \mathbb{Q}}(u+v \sqrt{-5})=u^{2}+5 v^{2}$ can never be 3. At the same time $a=2+\sqrt{-5}$ is not a prime because $2+\sqrt{-5} \mid(2+\sqrt{-5})(2-\sqrt{-5})=9$ but $2+\sqrt{-5} \nmid 3$ as

$$
\frac{3}{2+\sqrt{-5}}=\frac{2-\sqrt{-5}}{3} \notin \mathbb{Z}[\sqrt{-5}]
$$

What is really going on in this example is that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
Proposition 3. If R is a UFD then all irreducible are primes.
Proof. Suppose x is irreducible and $x \mid a b$. Then $c x=a b$ for some c. Since R is a UFD we may decompose into irreducibles $a=\prod a_{i}, b=\prod b_{i}$ and $c=\prod c_{i}$ in which case the uniqueness of the decomposition implies that x is among the irreducibles a_{i}, b_{j}. Thus $x \mid a$ or $x \mid b$.

Theorem 4. If R is a PID then R is a UFD.
Proof. First, if $I_{1} \subset I_{2} \subset \ldots$ is a chain of ideals of R then $I=\cup I_{n}$ is an ideal of R which is necessarily principal and so $I=(a)$. But then $a \in \cup I_{n}$ implies that $a \in I_{n} \subset I_{n+1} \subset \ldots$ for some n which implies that $I_{n}=I_{n+1}=\ldots=(a)$. Thus every PID is noetherian.

Existence. Since R is noetherian the set of (principal) ideals of R which don't decompose into irreducibles has a maximal element (x). Then x cannot be irreducible and so $x=y z$ for y, z not units. Then $(x) \subsetneq(y),(z)$ and by maximality $y=\prod y_{i}$ and $z=\prod z_{i}$ are products of irreducibles. But then $x=\prod y_{i} \prod z_{j}$ is a product of irreducibles yielding a contradiction.

Uniqueness. If R is a PID and x is irreducible then (x) is a maximal ideal. Indeed, if not then $(x) \subsetneq \mathfrak{m} \subset R$ where $\mathfrak{m}=(a)$ is some maximal ideal and so $a \mid x$ but $x \nmid a$. Thus $x=a b$ where $b \in R$ is not a unit contradicting the fact that x is irreducible. Now if $\prod x_{i}=\prod y_{j}$ are two products of irreducibles then, because the ideals $\left(x_{i}\right)$ and $\left(y_{j}\right)$ are maximal, analogously to the case of unique factorization into prime ideals in Dedekind domains, we deduce that $\left(x_{1}\right)=\left(y_{i}\right)$ for some i. Canceling terms we can inductively show that the two sets of factors are the same, up to units.

From the homework: a Euclidean domain is an integral domain R with a Euclidean function $d: R-\{0\} \rightarrow$ $\mathbb{Z}_{>0}$ such that division with remainder holds, i.e., if $m, n \in R(n \neq 0)$ then there exist $q, r \in R$ such that $m=n q+r$ and $r=0$ or $d(r)<d(n)$.

Proposition 5. Every Euclidean domain is a PID and thus a UFD.
Proof. Homework 2.
Examples are $\mathbb{Z}, \mathbb{Z}[\sqrt{d}]$ for $d=-1,-2,2$ and $\mathbb{Z}\left[\zeta_{3}\right]$. For more examples and applications see the homework.

5 Ideals under extensions or Ramification theory

A basic question is the following. Suppose L / K are number fields and \mathfrak{p} is a prime ideal of \mathcal{O}_{K}. Then $\mathfrak{p} \mathcal{O}_{L}$ is an ideal of \mathcal{O}_{L} and will decompose into a product of prime ideals of \mathcal{O}_{L}. What are these prime factors? And what arithmetic significance do they have? Can they be predicted?
Example 6. (From homework 2) If $K=\mathbb{Q}$ and $L=\mathbb{Q}(i)$. The ideal (2) $\mathbb{Z}[i]$ factors as $(1+i)^{2}$. If p is a prime $\equiv 3(\bmod 4)$ then $(p) \mathbb{Z}[i]$ stays a prime ideal in $\mathbb{Z}[i]$. If $p \equiv 1(\bmod 4)$ then $(p) \mathbb{Z}[i]$ splits as a product $(p) \mathbb{Z}[i]=\mathfrak{q} \overline{\mathfrak{q}}$. For example (5) $\mathbb{Z}[i]=(2+i)(2-i)$.
Proposition 7. Suppose L / K are number fields (also works for a finite extension of fraction fields of integral rings). If \mathfrak{p} is a prime ideal of \mathcal{O}_{K} and \mathfrak{q} is a prime ideal of \mathcal{O}_{L} then the following are equivalent:

1. $\mathfrak{q} \mid \mathfrak{p} \mathcal{O}_{L}$
2. $\mathfrak{q} \supset \mathfrak{p}$
3. $\mathfrak{q} \cap \mathcal{O}_{K}=\mathfrak{p}$
4. $\mathfrak{q} \cap K=\mathfrak{p}$.

If any of these condition are satisfied we say $\mathfrak{q} \mid \mathfrak{p}$ or \mathfrak{q} lies above \mathfrak{p} or \mathfrak{p} lies below \mathfrak{q}.
Proof. 1 implies 2 becauase $\mathfrak{p} \subset \mathfrak{p} \mathcal{O}_{L}$. 2 implies 3 because $\mathfrak{q} \cap \mathcal{O}_{K}$ is an ideal of \mathcal{O}_{K}, it is proper (otherwise 1 would be in \mathfrak{q}) and contains \mathfrak{p} and so must equal \mathfrak{p} by maximality of \mathfrak{p}. 3 implies 4 because $\mathcal{O}_{L} \cap K=\mathcal{O}_{K}$. Finally 4 implies 1 because then $\mathfrak{p} \subset \mathfrak{q}$ and so $\mathfrak{p} \mathcal{O}_{L} \subset \mathfrak{q}$.

Proposition 8. Suppose L / K are number fields.

1. Every prime ideal \mathfrak{q} of \mathcal{O}_{L} lies above a prime ideal \mathfrak{p} of \mathcal{O}_{K}.
2. Every prime ideal \mathfrak{p} of \mathcal{O}_{K} lies below a prime ideal \mathfrak{q} of \mathcal{O}_{L}.

Proof. For the first part note that $\mathfrak{q} \cap \mathcal{O}_{K}$ is an ideal of \mathcal{O}_{K}. It cannot be everything because then $1 \in \mathfrak{q}$ and if $\alpha \in \mathfrak{q}$ then $\alpha \mid N_{L / K}(\alpha) \in \mathcal{O}_{K}$ and so $\mathfrak{q} \cap \mathcal{O}_{K} \neq 0$. Moreover,

$$
\mathcal{O}_{K} /\left(\mathcal{O}_{K} \cap \mathfrak{q}\right) \cong\left(\mathcal{O}_{K}+\mathfrak{q}\right) / \mathfrak{q} \subset \mathcal{O}_{L} / \mathfrak{q}
$$

The RHS being a field implies that the LHS is an integral domain and so $\mathfrak{q} \cap \mathcal{O}_{K}$ is a prime ideal of \mathcal{O}_{K}.
For the second part, we seek \mathfrak{q} of the form $\mathfrak{p} \mathcal{O}_{L}$. Since \mathfrak{p} is proper it follows that $\mathfrak{p}^{-1} \supsetneq \mathcal{O}_{K}$ and so $\mathfrak{p}^{-1}=\sum \mathbb{Z} \alpha_{i}$ where at least one of the α_{i} is not in \mathcal{O}_{K}. With $\alpha=\alpha_{i} \notin \mathcal{O}_{K}$ we have $\alpha \mathfrak{p} \mathcal{O}_{L} \subset \mathfrak{p}^{-1} \mathfrak{p} \mathcal{O}_{L}=\mathcal{O}_{L}$. If $\mathfrak{p} \mathcal{O}_{L}=\mathcal{O}_{L}$ it would follows that $\alpha \mathcal{O}_{L} \subset \mathcal{O}_{L}$ but then we'd deduce that $\alpha \cdot 1 \in \mathcal{O}_{L}$ contradicting our choice. Thus $\mathfrak{p} \mathcal{O}_{L} \subsetneq \mathcal{O}_{L}$. Finally, any prime factor \mathfrak{q} of $\mathfrak{p} \mathcal{O}_{L}$ will lie above \mathfrak{p}.

