Introduction to Algebraic Number Theory Lecture 9

Andrei Jorza

2014-02-02

Today: Ramification and inertia indices, norms of ideals. Textbook here is http://wstein.org/books/ant/ant.pdf

5 Ideals under extensions (continued)

(5.1) (Continued)

Example 1. Suppose *m* is square-free, different from 1 and $\equiv 2,3 \pmod{4}$. Let $K = \mathbb{Q}(\sqrt{m})$ in which case $\mathcal{O}_K = \mathbb{Z}[\sqrt{m}]$.

1. If $X^2 - m = 0$ has no solutions in \mathbb{F}_p then

$$\mathcal{O}_K \cong \mathbb{Z}[X]/(X^2 - m) \to \mathbb{F}_p[X]/(X^2 - m)$$

is surjective onto the field $\mathbb{F}_p[X]/(X^2-m)$ and has kernel $(p)\mathcal{O}_K$. Thus $(p)\mathcal{O}_K$ is a prime ideal of \mathcal{O}_K .

2. If $X^2 - m = 0$ has two solutions in \mathbb{F}_p , with representatives a and -a in \mathbb{Z} then

$$\mathcal{O}_K \cong \mathbb{Z}[X]/(X^2 - m) \to \mathbb{F}_p[X]/(X^2 - m) \cong \mathbb{F}_p[X]/(X - a) \oplus \mathbb{F}_p[X]/(X + a) \cong \mathbb{F}_p \oplus \mathbb{F}_p$$

is again surjective. The preimage of $\mathbb{F}_p \oplus 0$ is the ideal $(p, \sqrt{m} - a)$ which is then prime since the image is a field. Similarly the preimage of $0 \oplus \mathbb{F}_p$ is the prime ideal $(p, \sqrt{m} + a)$ and

$$(p)\mathcal{O}_K = (p,\sqrt{m}-a)(p,\sqrt{m}+a)$$

is the decomposition into primes.

(5.2) Ramification and inertia index.

Definition 2. If R is a Dedekind domain and \mathfrak{p} is a prime (and therefore maximal) ideal then the **residue** field at \mathfrak{p} is $k_{\mathfrak{p}} = R/\mathfrak{p}$.

Suppose now that L/K are number fields, \mathfrak{p} is a prime ideal of \mathcal{O}_K and \mathfrak{q} is a prime ideal of \mathcal{O}_L such that $\mathfrak{q} \mid \mathfrak{p}$. Then $k_{\mathfrak{q}} = \mathcal{O}_L/\mathfrak{q} \supset (\mathfrak{q} + \mathcal{O}_K)/\mathfrak{q} \cong \mathcal{O}_K/\mathfrak{p} = k_{\mathfrak{p}}$ and so $k_{\mathfrak{q}}$ is a finite extension of $k_{\mathfrak{p}}$.

Definition 3. The inertia index $f_{\mathfrak{q}/\mathfrak{p}} = [k_{\mathfrak{q}} : k_{\mathfrak{p}}]$. The ramification index is the exponent $v_{\mathfrak{q}}(\mathfrak{p}\mathcal{O}_L)$ of the prime ideal \mathfrak{q} in the prime ideal decomposition of $\mathfrak{p}\mathcal{O}_L$.

Example 4. Let $K = \mathbb{Q}(i)$. We already know that $(2)\mathcal{O}_K = (1+i)^2$, $(p)\mathcal{O}_K$ is prime when $p \equiv 3 \pmod{4}$ and if $p \equiv 1 \pmod{4}$ then $(p)\mathcal{O}_K = (a+bi)(a-bi)$ where $p = a^2 + b^2$. Let's compute the ramification and inertia indices.

1. p = 2 and $\mathbf{q} = (2+i)$. Then $e_{\mathbf{q}/p} = 2$ and $k_{\mathbf{q}} = \mathbb{Z}[i]/(1+i) \cong \mathbb{Z}[X]/(X^2+1, X+1) \cong \mathbb{Z}/2 \cong \mathbb{F}_2$ and so $f_{\mathbf{q}/p} = 1$.

- 2. $p \equiv 1 \pmod{4}$ with $a^2 + 1 \equiv 0 \pmod{p}$. Let $\mathfrak{q}_1 = (p, a + i)$ and $\mathfrak{q}_2 = (p, a i)$ (If $p = u^2 + v^2$ then (p, a + i) = (u + vi) and (p, a i) = (u vi)). Since the setup is symmetric we only compute for $\mathfrak{q} = \mathfrak{q}_1$. Clearly $e_{\mathfrak{q}/p} = 1$ from the prime decomposition. Next, $\mathbb{Z}[i]/(p, a + i) \cong \mathbb{Z}[X]/(X^2 + 1, p, a + X) \cong \mathbb{F}_p/(a^2 + 1) = \mathbb{F}_p$ and so $f_{\mathfrak{q}/p} = 1$.
- 3. If $p \equiv 3 \pmod{4}$ then $\mathfrak{q} = (p)\mathbb{Z}[i]$ is a prime ideal and so $e_{\mathfrak{q}/p} = 1$. Now $\mathbb{Z}[i]/p\mathbb{Z}[i] \cong \mathbb{F}_p[X]/(X^2+1) \cong \mathbb{F}_{p^2}$ since $X^2 + 1$ doesn't have a root mod p. Thus $f_{\mathfrak{q}/p} = 2$.

We want the following theorem, for which we need to talk about norms of ideals first.

Theorem 5. If L/K are number fields, \mathfrak{p} is a prime ideal of \mathcal{O}_K and $\mathfrak{q}_1, \ldots, \mathfrak{q}_r$ are the distinct prime ideals of \mathcal{O}_L appearing in the prime factorization of $\mathfrak{p}\mathcal{O}_L$. Then

$$\sum_{i=1}^{r} e_{\mathfrak{q}_i/\mathfrak{p}} f_{\mathfrak{q}_i/\mathfrak{p}} = [L:K]$$

In order to prove this we need to study norms of ideals.

(5.3) Norms of ideals.

Definition 6. Suppose V is a vector space over \mathbb{Q} and $L, M \subset V$ are \mathbb{Z} -submodules of full rank. Define $[L:M] = |\det(A)|$ for any invertible matrix $A \in \operatorname{GL}(V)$ such that A(L) = M.

Definition 7. If K is a number field and I is a fractional ideal define $||I|| = [\mathcal{O}_K : I]$.

Example 8. Say $K = \mathbb{Q}(\sqrt{-23})$ and $I = (2, (-1+\sqrt{-23})/2)$. Then \mathcal{O}_K is generated as a module over \mathbb{Z} by 1 and $(1+\sqrt{-23})/2$ and so I as a \mathbb{Z} -module is generated by $2, 1+\sqrt{-23}, (-1+\sqrt{-23})/2$ and $(\sqrt{-23}+23)/2$. Playing with generator you see that I is generated over \mathbb{Z} by 2 and $(-1+\sqrt{-23})/2$ and so the diagonal matrix (2, 1) takes \mathcal{O}_K to I (with respect to the basis $1, (-1+\sqrt{-23})/2$ of K over \mathbb{Q}) and so ||I|| = 2.

Proposition 9. Suppose K is a number field.

1. If $a \in K$ and I is a fractional ideal of K then $||(a)I|| = |N_{K/\mathbb{Q}}(a)|||I||$.

2. If I and J are fractional ideals of K then ||IJ|| = ||I||||J||.

Proof. Part 1 done in class, see textbook Lemma 6.3.3

Part 2 will do next time, see textbook Proposition 6.3.4. The crucial ingredient is the following Lemma + Corollary. $\hfill \Box$

Lemma 10. Suppose R is a Dedekind domain and \mathfrak{p} is a prime ideal. Then $\mathfrak{p}^n/\mathfrak{p}^{n+1} \cong R/\mathfrak{p}$.

Proof. Will do in class, see textbook Proposition 5.2.4.

Corollary 11. If R is a Dedekind domain and \mathfrak{p} is a prime ideal then $|R/\mathfrak{p}^n| = |k_\mathfrak{p}|^n$.

Proof. In the filtration $R/\mathfrak{p}^n \supset \mathfrak{p}/\mathfrak{p}^n \supset \ldots \supset \mathfrak{p}^{n-1}/\mathfrak{p}^n$ each successive quotient is $\mathfrak{p}^i/\mathfrak{p}^{i+1} \cong k_\mathfrak{p}$. Thus $|R/\mathfrak{p}^n| = \prod_{i=0}^{n-1} |\mathfrak{p}^i/\mathfrak{p}^{i+1}| = |k_\mathfrak{p}|^n$.