Introduction to Algebraic Number Theory
 Lecture 9

Andrei Jorza

2014-02-02

Today: Ramification and inertia indices, norms of ideals. Textbook here is http://wstein.org/books/ant/ant.pdf

5 Ideals under extensions (continued)

(5.1) (Continued)

Example 1. Suppose m is square-free, different from 1 and $\equiv 2,3(\bmod 4)$. Let $K=\mathbb{Q}(\sqrt{m})$ in which case $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{m}]$.

1. If $X^{2}-m=0$ has no solutions in \mathbb{F}_{p} then

$$
\mathcal{O}_{K} \cong \mathbb{Z}[X] /\left(X^{2}-m\right) \rightarrow \mathbb{F}_{p}[X] /\left(X^{2}-m\right)
$$

is surjective onto the field $\mathbb{F}_{p}[X] /\left(X^{2}-m\right)$ and has kernel $(p) \mathcal{O}_{K}$. Thus $(p) \mathcal{O}_{K}$ is a prime ideal of \mathcal{O}_{K}.
2. If $X^{2}-m=0$ has two solutions in \mathbb{F}_{p}, with representatives a and $-a$ in \mathbb{Z} then

$$
\mathcal{O}_{K} \cong \mathbb{Z}[X] /\left(X^{2}-m\right) \rightarrow \mathbb{F}_{p}[X] /\left(X^{2}-m\right) \cong \mathbb{F}_{p}[X] /(X-a) \oplus \mathbb{F}_{p}[X] /(X+a) \cong \mathbb{F}_{p} \oplus \mathbb{F}_{p}
$$

is again surjective. The preimage of $\mathbb{F}_{p} \oplus 0$ is the ideal $(p, \sqrt{m}-a)$ which is then prime since the image is a field. Similarly the preimage of $0 \oplus \mathbb{F}_{p}$ is the prime ideal $(p, \sqrt{m}+a)$ and

$$
(p) \mathcal{O}_{K}=(p, \sqrt{m}-a)(p, \sqrt{m}+a)
$$

is the decomposition into primes.
(5.2) Ramification and inertia index.

Definition 2. If R is a Dedekind domain and \mathfrak{p} is a prime (and therefore maximal) ideal then the residue field at \mathfrak{p} is $k_{\mathfrak{p}}=R / \mathfrak{p}$.

Suppose now that L / K are number fields, \mathfrak{p} is a prime ideal of \mathcal{O}_{K} and \mathfrak{q} is a prime ideal of \mathcal{O}_{L} such that $\mathfrak{q} \mid \mathfrak{p}$. Then $k_{\mathfrak{q}}=\mathcal{O}_{L} / \mathfrak{q} \supset\left(\mathfrak{q}+\mathcal{O}_{K}\right) / \mathfrak{q} \cong \mathcal{O}_{K} / \mathfrak{p}=k_{\mathfrak{p}}$ and so $k_{\mathfrak{q}}$ is a finite extension of $k_{\mathfrak{p}}$.
Definition 3. The inertia index $f_{\mathfrak{q} / \mathfrak{p}}=\left[k_{\mathfrak{q}}: k_{\mathfrak{p}}\right]$. The ramification index is the exponent $v_{\mathfrak{q}}\left(\mathfrak{p} \mathcal{O}_{L}\right)$ of the prime ideal \mathfrak{q} in the prime ideal decomposition of $\mathfrak{p} \mathcal{O}_{L}$.

Example 4. Let $K=\mathbb{Q}(i)$. We already know that $(2) \mathcal{O}_{K}=(1+i)^{2},(p) \mathcal{O}_{K}$ is prime when $p \equiv 3(\bmod 4)$ and if $p \equiv 1(\bmod 4)$ then $(p) \mathcal{O}_{K}=(a+b i)(a-b i)$ where $p=a^{2}+b^{2}$. Let's compute the ramification and inertia indices.

1. $p=2$ and $\mathfrak{q}=(2+i)$. Then $e_{\mathfrak{q} / p}=2$ and $k_{\mathfrak{q}}=\mathbb{Z}[i] /(1+i) \cong \mathbb{Z}[X] /\left(X^{2}+1, X+1\right) \cong \mathbb{Z} / 2 \cong \mathbb{F}_{2}$ and so $f_{\mathfrak{q} / p}=1$.
2. $p \equiv 1(\bmod 4)$ with $a^{2}+1 \equiv 0(\bmod p)$. Let $\mathfrak{q}_{1}=(p, a+i)$ and $\mathfrak{q}_{2}=(p, a-i)$ (If $p=u^{2}+v^{2}$ then $(p, a+i)=(u+v i)$ and $(p, a-i)=(u-v i))$. Since the setup is symmetric we only compute for $\mathfrak{q}=\mathfrak{q}_{1}$. Clearly $e_{\mathfrak{q} / p}=1$ from the prime decomposition. Next, $\mathbb{Z}[i] /(p, a+i) \cong \mathbb{Z}[X] /\left(X^{2}+1, p, a+X\right) \cong$ $\mathbb{F}_{p} /\left(a^{2}+1\right)=\mathbb{F}_{p}$ and so $f_{\mathfrak{q} / p}=1$.
3. If $p \equiv 3(\bmod 4)$ then $\mathfrak{q}=(p) \mathbb{Z}[i]$ is a prime ideal and so $e_{\mathfrak{q} / p}=1$. Now $\mathbb{Z}[i] / p \mathbb{Z}[i] \cong \mathbb{F}_{p}[X] /\left(X^{2}+1\right) \cong$ $\mathbb{F}_{p^{2}}$ since $X^{2}+1$ doesn't have a root $\bmod p$. Thus $f_{\mathfrak{q} / p}=2$.

We want the following theorem, for which we need to talk about norms of ideals first.
Theorem 5. If L / K are number fields, \mathfrak{p} is a prime ideal of \mathcal{O}_{K} and $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ are the distinct prime ideals of \mathcal{O}_{L} appearing in the prime factorization of $\mathfrak{p} \mathcal{O}_{L}$. Then

$$
\sum_{i=1}^{r} e_{\mathfrak{q}_{i} / \mathfrak{p}} f_{\mathfrak{q}_{i} / \mathfrak{p}}=[L: K]
$$

In order to prove this we need to study norms of ideals.
(5.3) Norms of ideals.

Definition 6. Suppose V is a vector space over \mathbb{Q} and $L, M \subset V$ are \mathbb{Z}-submodules of full rank. Define $[L: M]=|\operatorname{det}(A)|$ for any invertible matrix $A \in \mathrm{GL}(V)$ such that $A(L)=M$.

Definition 7. If K is a number field and I is a fractional ideal define $\|I\|=\left[\mathcal{O}_{K}: I\right]$.
Example 8. Say $K=\mathbb{Q}(\sqrt{-23})$ and $I=(2,(-1+\sqrt{-23}) / 2)$. Then \mathcal{O}_{K} is generated as a module over \mathbb{Z} by 1 and $(1+\sqrt{-23}) / 2$ and so I as a \mathbb{Z}-module is generated by $2,1+\sqrt{-23},(-1+\sqrt{-23}) / 2$ and $(\sqrt{-23}+23) / 2$. Playing with generator you see that I is generated over \mathbb{Z} by 2 and $(-1+\sqrt{-23}) / 2$ and so the diagonal matrix $(2,1)$ takes \mathcal{O}_{K} to I (with respect to the basis $1,(-1+\sqrt{-23}) / 2$ of K over \mathbb{Q}) and so $\|I\|=2$.

Proposition 9. Suppose K is a number field.

1. If $a \in K$ and I is a fractional ideal of K then $\|(a) I\|=\left|N_{K / \mathbb{Q}}(a)\|\mid I\|\right.$.
2. If I and J are fractional ideals of K then $\|I J\|=\|I\|\| \| \|$.

Proof. Part 1 done in class, see textbook Lemma 6.3.3
Part 2 will do next time, see textbook Proposition 6.3.4. The crucial ingredient is the following Lemma + Corollary.

Lemma 10. Suppose R is a Dedekind domain and \mathfrak{p} is a prime ideal. Then $\mathfrak{p}^{n} / \mathfrak{p}^{n+1} \cong R / \mathfrak{p}$.
Proof. Will do in class, see textbook Proposition 5.2.4.
Corollary 11. If R is a Dedekind domain and \mathfrak{p} is a prime ideal then $\left|R / \mathfrak{p}^{n}\right|=\left|k_{\mathfrak{p}}\right|^{n}$.
Proof. In the filtration $R / \mathfrak{p}^{n} \supset \mathfrak{p} / \mathfrak{p}^{n} \supset \ldots \supset \mathfrak{p}^{n-1} / \mathfrak{p}^{n}$ each successive quotient is $\mathfrak{p}^{i} / \mathfrak{p}^{i+1} \cong k_{\mathfrak{p}}$. Thus $\left|R / \mathfrak{p}^{n}\right|=\prod_{i=0}^{n-1}\left|\mathfrak{p}^{i} / \mathfrak{p}^{i+1}\right|=\left|k_{\mathfrak{p}}\right|^{n}$.

