Introduction to Algebraic Number Theory Lecture 10

Andrei Jorza

2014-02-05

Today: Norms of ideals, ramification index and inertia index. Textbook here is http://wstein.org/books/ant/ant.pdf

5 Ideals under extensions (continued)

(5.3) Finished the proposition from last time.
(5.4) Main theorem about ramification and inertia indices. Recall from last time that if R is a Dedekind domain and \mathfrak{p} is a prime ideal then $\left|R / \mathfrak{p}^{n}\right|=\left|k_{\mathfrak{p}}\right|^{n}$.

Lemma 1. Let L / K be number fields and \mathfrak{p} a prime ideal of \mathcal{O}_{K}. Then $\operatorname{dim}_{k_{\mathfrak{p}}}\left(\mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L}\right) \leq[L: K]$.
Proof. (The proof from class had a couple of issues, fixed here, but which don't affect the argument at all.) Let $n=[L: K]$. We need to show that any $n+1$ elements $\alpha_{1}, \ldots, \alpha_{n+1}$ of $\mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L}$ have a nontrivial $k_{\mathfrak{p}}$ dependence. Since $\operatorname{dim}_{K} L=n$, there exist $\beta_{1}, \ldots, \beta_{n+1} \in K$, not all 0 , such that $\sum \alpha_{i} \beta_{i}=0$. Multiplying by suitable integers we may assume that $\beta_{i} \in \mathcal{O}_{K}$ and we'd like to find such a dependence such that the images of $\beta_{i} \in \mathcal{O}_{K}$ in $k_{\mathfrak{p}}=\mathcal{O}_{K} / \mathfrak{p}$ are not all 0 . Suppose $\beta_{i} \in \mathfrak{p}$ for all i. Then the ideal $J=\left(\alpha_{1}, \ldots, \beta_{n+1}\right)=$ $\sum \mathcal{O}_{K} \beta_{i} \subset \mathfrak{p}$. Let $J^{-1}=\sum \mathcal{O}_{K} \gamma_{i}$. Then $J J^{-1}=\sum \mathcal{O}_{K} \beta_{i} \gamma_{j}=\mathcal{O}_{K}$ and thus $\beta_{i} \gamma_{j} \in \mathcal{O}_{K}$ for all i, j and $\beta_{i_{0}} \gamma_{j_{0}} \notin \mathfrak{p}$ for some i_{0}, j_{0}. Then $\sum \alpha_{i} \beta_{i}=0$ implies $\sum \alpha_{i} \beta_{i} \gamma_{j_{0}}=0$ is a linear dependence among the α_{i}, with coefficients in \mathcal{O}_{K} and such that at least one of the coefficients $\left(\beta_{i_{0}} \gamma_{j_{0}}\right)$ does not vanish in $k_{\mathfrak{p}}$. Thus α_{i} are dependent over $k_{\mathfrak{p}}$ and the conclusion follows.

Theorem 2. Suppose L / K are number fields.

1. If \mathfrak{p} is a prime ideal of \mathcal{O}_{K} and \mathfrak{q}_{i} are the distinct prime factors of $\mathfrak{p} \mathcal{O}_{L}$ then

$$
\sum e_{\mathfrak{q}_{i} / \mathfrak{p}} f_{\mathfrak{q}_{i} / \mathfrak{p}}=[L: K]
$$

where recall that $\mathfrak{p} \mathcal{O}_{L}=\prod \mathfrak{q}_{i}^{e_{\mathfrak{q}_{i} / \mathfrak{p}}}$ and $f_{\mathfrak{q}_{i} / \mathfrak{p}}=\left[k_{\mathfrak{q}_{i}}: k_{\mathfrak{p}}\right]$.
2. If I is a fractional ideal of K then $\left\|I \mathcal{O}_{L}\right\|=\|I\|^{[L: K]}$.

Proof. Note that the norm is multiplicative (from last time) and so

$$
\left\|\mathfrak{p} \mathcal{O}_{L}\right\|=\prod\left\|\mathfrak{q}_{i}\right\|^{e_{i}}=\prod\left|k_{\mathfrak{q}_{i}}\right|^{e_{i}}=\prod\left|k_{\mathfrak{p}}\right|^{e_{i} f_{\mathfrak{q}_{i} / \mathfrak{p}}}=\|\mathfrak{p}\|^{\sum e_{i} f_{i}}
$$

We first prove (1) for $K=\mathbb{Q}$. Indeed, then $\mathfrak{p}=(p)$ and so $\mathcal{O}_{L} / p \mathcal{O}_{L} \cong \mathbb{F}_{p}^{[L: K]}$ since \mathcal{O}_{L} is a rank n free \mathbb{Z}-module which implies that $p^{n}=p^{\sum e_{i} f_{i}}$ and the conclusion follows.

Next we prove (2). By multiplicativity of the norm of an ideal and the fact that $\|a I\|=\left|N_{K / \mathbb{Q}}(a)\|\mid I\|\right.$ it suffices to treat the case of prime ideals $I=\mathfrak{p}$ in which case we need to show that $\left\|\mathfrak{p} \mathcal{O}_{L}\right\|=\|\mathfrak{p}\|^{n}$ where $n=[L: K]$. Let p be the prime of \mathbb{Z} below \mathfrak{p} of \mathcal{O}_{K} and let $(p) \mathcal{O}_{K}=\prod \mathfrak{p}_{i}^{e^{\mathfrak{p}_{i} / \mathfrak{p}}}$. From the lemma we know
that $\operatorname{dim}_{k_{\mathfrak{p}_{i}}} \mathcal{O}_{L} / \mathfrak{p}_{i} \mathcal{O}_{L} \leq[L: K]$ while from part (1) we know that $\sum e_{\mathfrak{p}_{i} / p} f_{\mathfrak{p}_{i} / p}=[K: \mathbb{Q}]$ and, equivalently for $L / \mathbb{Q},\left\|(p) \mathcal{O}_{L}\right\|=p^{[L: \mathbb{Q}]}$. So

$$
\begin{aligned}
p^{[L: \mathbb{Q}]} & =\left\|(p) \mathcal{O}_{L}\right\| \\
& =\prod| | \mathfrak{p}_{i} \mathcal{O}_{L} \|^{e_{\mathfrak{p}_{i} / p}} \\
& =\prod\left|\mathcal{O}_{L} / \mathfrak{p}_{i} \mathcal{O}_{L}\right|^{e_{\mathfrak{p}_{i} / p}} \\
& \leq \prod\left|k_{\mathfrak{p}_{i}}\right|^{[L: K] e_{\mathfrak{p}_{i} / p}} \\
& =\prod\left|\mathbb{F}_{p}\right|^{[L: K] f_{\mathfrak{p}_{i} / p} e_{\mathfrak{p}_{i} / p}} \\
& =p^{[L: K][K: \mathbb{Q}]}=p^{[L: \mathbb{Q}]}
\end{aligned}
$$

Therefore all inequalities are equality and so $\left\|\mathfrak{p}_{i} \mathcal{O}_{L}\right\|=\left\|\mathfrak{p}_{i}\right\|^{[L: K]}$ for all i and in particular for $\mathfrak{p}=\mathfrak{p}_{i}$ for some i.

Finally, from (2) we deduce (1). We already know that

$$
\left\|\mathfrak{p} \mathcal{O}_{L}\right\|=\|\mathfrak{p}\|^{\sum e_{\mathfrak{q}_{i} / \mathfrak{p}} f_{\mathfrak{q}_{i} / \mathfrak{p}}}
$$

and $\left\|\mathfrak{p} \mathcal{O}_{L}\right\|=\|\mathfrak{p}\|^{[L: K]}$ from part (2) and the conclusion follows.

