Introduction to Algebraic Number Theory Lecture 10

Andrei Jorza

2014-02-05

Today: Norms of ideals, ramification index and inertia index. Textbook here is http://wstein.org/books/ant/ant.pdf

5 Ideals under extensions (continued)

(5.3) Finished the proposition from last time.

(5.4) Main theorem about ramification and inertia indices. Recall from last time that if R is a Dedekind domain and \mathfrak{p} is a prime ideal then $|R/\mathfrak{p}^n| = |k_\mathfrak{p}|^n$.

Lemma 1. Let L/K be number fields and \mathfrak{p} a prime ideal of \mathcal{O}_K . Then $\dim_{k_\mathfrak{p}}(\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L) \leq [L:K]$.

Proof. (The proof from class had a couple of issues, fixed here, but which don't affect the argument at all.) Let n = [L : K]. We need to show that any n + 1 elements $\alpha_1, \ldots, \alpha_{n+1}$ of $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ have a nontrivial $k_\mathfrak{p}$ dependence. Since $\dim_K L = n$, there exist $\beta_1, \ldots, \beta_{n+1} \in K$, not all 0, such that $\sum \alpha_i \beta_i = 0$. Multiplying by suitable integers we may assume that $\beta_i \in \mathcal{O}_K$ and we'd like to find such a dependence such that the images of $\beta_i \in \mathcal{O}_K$ in $k_\mathfrak{p} = \mathcal{O}_K/\mathfrak{p}$ are not all 0. Suppose $\beta_i \in \mathfrak{p}$ for all *i*. Then the ideal $J = (\alpha_1, \ldots, \beta_{n+1}) =$ $\sum \mathcal{O}_K \beta_i \subset \mathfrak{p}$. Let $J^{-1} = \sum \mathcal{O}_K \gamma_i$. Then $JJ^{-1} = \sum \mathcal{O}_K \beta_i \gamma_j = \mathcal{O}_K$ and thus $\beta_i \gamma_j \in \mathcal{O}_K$ for all *i*, *j* and $\beta_{i_0} \gamma_{j_0} \notin \mathfrak{p}$ for some i_0, j_0 . Then $\sum \alpha_i \beta_i = 0$ implies $\sum \alpha_i \beta_i \gamma_{j_0} = 0$ is a linear dependence among the α_i , with coefficients in \mathcal{O}_K and such that at least one of the coefficients $(\beta_{i_0} \gamma_{j_0})$ does not vanish in $k_\mathfrak{p}$. Thus α_i are dependent over $k_\mathfrak{p}$ and the conclusion follows.

Theorem 2. Suppose L/K are number fields.

1. If \mathfrak{p} is a prime ideal of \mathcal{O}_K and \mathfrak{q}_i are the distinct prime factors of $\mathfrak{p}\mathcal{O}_L$ then

$$\sum e_{\mathfrak{q}_i/\mathfrak{p}} f_{\mathfrak{q}_i/\mathfrak{p}} = [L:K]$$

where recall that $\mathfrak{p}\mathcal{O}_L = \prod \mathfrak{q}_i^{e_{\mathfrak{q}_i}/\mathfrak{p}}$ and $f_{\mathfrak{q}_i}/\mathfrak{p} = [k_{\mathfrak{q}_i}:k_{\mathfrak{p}}]$.

2. If I is a fractional ideal of K then $||I\mathcal{O}_L|| = ||I||^{[L:K]}$.

Proof. Note that the norm is multiplicative (from last time) and so

$$||\mathfrak{p}\mathcal{O}_L|| = \prod ||\mathfrak{q}_i||^{e_i} = \prod |k_{\mathfrak{q}_i}|^{e_i} = \prod |k_{\mathfrak{p}}|^{e_i f_{\mathfrak{q}_i/\mathfrak{p}}} = ||\mathfrak{p}||^{\sum e_i f_i}$$

We first prove (1) for $K = \mathbb{Q}$. Indeed, then $\mathfrak{p} = (p)$ and so $\mathcal{O}_L / p \mathcal{O}_L \cong \mathbb{F}_p^{[L:K]}$ since \mathcal{O}_L is a rank *n* free \mathbb{Z} -module which implies that $p^n = p^{\sum e_i f_i}$ and the conclusion follows.

Next we prove (2). By multiplicativity of the norm of an ideal and the fact that $||aI|| = |N_{K/\mathbb{Q}}(a)|||I||$ it suffices to treat the case of prime ideals $I = \mathfrak{p}$ in which case we need to show that $||\mathfrak{pO}_L|| = ||\mathfrak{p}||^n$ where n = [L:K]. Let p be the prime of \mathbb{Z} below \mathfrak{p} of \mathcal{O}_K and let $(p)\mathcal{O}_K = \prod \mathfrak{p}_i^{e_{\mathfrak{p}_i/\mathfrak{p}}}$. From the lemma we know that $\dim_{k_{\mathfrak{p}_i}} \mathcal{O}_L/\mathfrak{p}_i \mathcal{O}_L \leq [L:K]$ while from part (1) we know that $\sum e_{\mathfrak{p}_i/p} f_{\mathfrak{p}_i/p} = [K:\mathbb{Q}]$ and, equivalently for L/\mathbb{Q} , $||(p)\mathcal{O}_L|| = p^{[L:\mathbb{Q}]}$. So

$$p^{[L:\mathbb{Q}]} = ||(p)\mathcal{O}_L||$$

= $\prod ||\mathfrak{p}_i\mathcal{O}_L||^{e_{\mathfrak{p}_i/p}}$
= $\prod |\mathcal{O}_L/\mathfrak{p}_i\mathcal{O}_L|^{e_{\mathfrak{p}_i/p}}$
 $\leq \prod |k_{\mathfrak{p}_i}|^{[L:K]e_{\mathfrak{p}_i/p}}$
= $\prod |\mathbb{F}_p|^{[L:K]f_{\mathfrak{p}_i/p}e_{\mathfrak{p}_i/p}}$
= $p^{[L:K][K:\mathbb{Q}]} = p^{[L:\mathbb{Q}]}$

Therefore all inequalities are equality and so $||\mathfrak{p}_i \mathcal{O}_L|| = ||\mathfrak{p}_i||^{[L:K]}$ for all *i* and in particular for $\mathfrak{p} = \mathfrak{p}_i$ for some *i*.

Finally, from (2) we deduce (1). We already know that

$$||\mathfrak{p}\mathcal{O}_L|| = ||\mathfrak{p}||^{\sum e_{\mathfrak{q}_i/\mathfrak{p}}f_{\mathfrak{q}_i/\mathfrak{p}}}$$

and $||\mathfrak{p}\mathcal{O}_L|| = ||\mathfrak{p}||^{[L:K]}$ from part (2) and the conclusion follows.