Introduction to Algebraic Number Theory Lecture 11

Andrei Jorza

2014-02-07

5 Ideals under extension (continued)

(5.5) Splitting.

Proposition 1. Suppose M/L/K is a tower of number fields and \mathfrak{p} , \mathfrak{q} and \mathfrak{r} ideals of \mathcal{O}_K , \mathcal{O}_L and \mathcal{O}_M respectively such that $\mathfrak{p} \mid \mathfrak{q} \mid \mathfrak{r}$. Then

$$e_{\mathfrak{r}/\mathfrak{p}} = e_{\mathfrak{r}/\mathfrak{q}} e_{\mathfrak{q}/\mathfrak{p}}$$
$$f_{\mathfrak{r}/\mathfrak{p}} = f_{\mathfrak{r}/\mathfrak{q}} f_{\mathfrak{q}/\mathfrak{p}}$$

Proof.

Definition 2. Let L/K be number fields. A prime ideal \mathfrak{p} of \mathcal{O}_K splits completely in \mathcal{O}_L if $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1 \dots \mathfrak{q}_n$ where n = [L : K]. Say \mathfrak{p} is inert in \mathcal{O}_L if $\mathfrak{p}\mathcal{O}_L$ is prime in \mathcal{O}_L .

Corollary 3. Let M/L/K be number fields and \mathfrak{p} a prime ideal of \mathcal{O}_K . If \mathfrak{p} splits completely in M then it splits completely in L.

Proof. \mathfrak{p} splits completely in M iff for every $\mathfrak{r} \mid \mathfrak{p}$ have $e_{\mathfrak{r}/\mathfrak{p}} = f_{\mathfrak{r}/\mathfrak{p}} = 1$. The statement follows from the previous proposition.

In fact the following also holds, but the general proof is beyond us (it uses analysis). (Most cases treated on the problem set.)

Proposition 4. Suppose L, L'/K are number fields and \mathfrak{p} is a prime ideal of \mathcal{O}_K . Then \mathfrak{p} splits completely in LL' if and only if it splits completely in each of L and L'.

The following homework problem provides an algorithm for factoring prime ideals is almost all cases.

Theorem 5. Let L/K be number fields and \mathfrak{p} a prime ideal of K lying above the prime \mathfrak{p} of \mathbb{Z} . Suppose $\alpha \in \mathcal{O}_L$ such that $L = K(\alpha)$ and $\mathfrak{p} \nmid |\mathcal{O}_L/\mathcal{O}_K[\alpha]|$. Let $f \in \mathcal{O}_K[X]$ be the minimal polynomial of α over K with mod \mathfrak{p} decomposition $f(X) \equiv \prod g_i(X)^{e_i} \pmod{\mathfrak{p}}$ where $g_i \mod \mathfrak{p}$ are distinct irreducibles. Then $\mathfrak{p}\mathcal{O}_L = \prod \mathfrak{q}_i^{e_i}$ where $\mathfrak{q}_i = \mathfrak{p}\mathcal{O}_L + g_i(\alpha)\mathcal{O}_L$ are distinct prime ideals with $f_{\mathfrak{q}_i/\mathfrak{p}} = \deg g_i$.

(5.6) Ramification.

Definition 6. Let L/K be number fields and $\mathfrak{q} \mid \mathfrak{p}$ prime ideals of \mathcal{O}_L and \mathcal{O}_K . Say that $\mathfrak{q}/\mathfrak{p}$ is unramified if $e_{\mathfrak{q}/\mathfrak{p}} = 1$ and ramified otherwise. Say that it is totally ramified if $f_{\mathfrak{q}/\mathfrak{p}} = 1$.

Say that \mathfrak{p} ramified in L if $\mathfrak{q}/\mathfrak{p}$ is ramified for some $\mathfrak{q} \mid \mathfrak{p}$.

Example 7. From problem set 2: If $K = \mathbb{Q}(\zeta_p)$ then $(p)\mathcal{O}_K = (p, 1 + \zeta_p)^{p-1}$ and so $(p, 1 + \zeta_p)/(p)$ is totally ramified. If $q \neq p$ is a prime of exact order r in the cyclic group \mathbb{F}_p^{\times} then $(q)\mathcal{O}_K = \mathfrak{q}_1 \dots \mathfrak{q}_{(p-1)/r}$ and $\mathfrak{q}_i/(q)$ is unramified.

Theorem 8. Let K/\mathbb{Q} be a number field. Then the prime p ramifies in K if and only if $p \mid \text{disc}(K)$.

Proof. For now the "only if" direction, the other part begin deferred until after Galois theory.

Suppose $\mathfrak{q}^2 \mid (p)\mathcal{O}_K$. Then $(p)\mathcal{O}_K = \mathfrak{q}I$ where *I* is divisible by all the prime ideals dividing (p). Let $\alpha \in I - (p)$. Then $\alpha \in \mathfrak{q}$ for every $\mathfrak{q} \mid (p)$.

Let $\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbb{C}$ be the embeddings fixing \mathbb{Q} and let $L = \prod \sigma_i(K)$ be the composite. For every prime ideal $\mathfrak{q} \mid (p)$ of \mathcal{O}_K write $\mathfrak{q}\mathcal{O}_L = \prod \mathfrak{r}_i$ as a product of (not necessarily distinct) prime ideals of \mathcal{O}_L . Since $\alpha \in \mathfrak{q}$ it follows that $\alpha \in \mathfrak{r}_i$ and as \mathfrak{q} varies across the prime ideals dividing $(p)\mathcal{O}_K$, \mathfrak{r}_i varies across the prime ideals dividing $(p)\mathcal{O}_L$. Thus $\alpha \in \mathfrak{r}$ for every prime ideal $\mathfrak{r} \mid (p)$ of \mathcal{O}_L .

For every $\sigma = \sigma_i$, $\sigma(\mathfrak{r})$ is also a prime ideal of $\sigma(\mathcal{O}_L) = \mathcal{O}_L$. Thus $\alpha \in \sigma(\mathfrak{r})$ and so $\sigma(\alpha) \in \mathfrak{r}$ for every σ .

Suppose $\alpha_1, \ldots, \alpha_n$ is an integral basis of \mathcal{O}_K and $\alpha = \sum m_i \alpha_i$. Since $\alpha \notin (p)$ it follows that at least one m_i , say m_1 is not divisible by p. Now the determinant $\det(\sigma_i(\alpha), \sigma_i(\alpha_2), \ldots, \sigma_i(\alpha_n))_{i=1,\ldots,n}$ is a linear combination of products of elements of \mathcal{O}_L with at least one fact in \mathfrak{r} which implies that $D = \operatorname{disc}_{K/\mathbb{Q}}(\alpha, \alpha_2, \ldots, \alpha_n)$, which is the square of this determinant, must be in \mathfrak{r} for all $\mathfrak{r} \mid (p)$ of \mathcal{O}_L . Thus $D \in \mathfrak{r} \cap \mathbb{Q} = (p)$.

But we've seen before that $\operatorname{disc}(\alpha, \alpha_2, \ldots, \alpha_n) = \operatorname{det}(B)^2 \operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{det}(B)^2 \operatorname{disc}(K)$ where B is the matrix taking $\alpha_1, \ldots, \alpha_n$ to $\alpha, \alpha_2, \ldots, \alpha_n$. Since $\operatorname{det}(B) = m_1$ is coprime to p is follows that $p \mid \operatorname{disc}(K)$ as desired.

- *Remark* 1. 1. If M/L/K are number fields and \mathfrak{p} is a prime ideal of \mathcal{O}_K which ramifies in L then \mathfrak{p} ramifies in M.
 - 2. If L/K are number fields, \mathfrak{p} a prime ideal of \mathcal{O}_K above p then \mathfrak{p} ramifies in L implies $p \mid \operatorname{disc}(L)$.
 - 3. As a corollary only finitely many prime ideals of \mathcal{O}_K can ramify in L because the previous remark implies that if \mathfrak{p} ramifies in L then $\mathfrak{p} \mid \operatorname{disc}(L)\mathcal{O}_K$.

6 Galois Theory

(6.1) In the proof of the first part of the previous theorem we used the composite $\prod \sigma(K)$, an awkward procedure which accounted for the fact that the embeddings of K into \mathbb{C} fixing \mathbb{Q} need not invary K.

Definition 9. An algebraic extension L/K of fields is said to be **Galois** if it is **separable** (i.e., every element of L has a minimal polynomial over K with no double root) and **normal** (i.e., if an irreducible polynomial in K[X] has one root in L then it has all roots in L).

Remark 2. It turns out that finite Galois extension can all be obtained by adjoining to K all the roots of a polynomial with no double root.

Example 10.

Definition 11. The Galois group of a Galois extension L/K is Gal(L/K). It's size is [L:K].

Fact 12. Suppose L/K is Galois. Then

- 1. $|\operatorname{Gal}(L/K)| = [L:K].$
- 2. $\operatorname{Gal}(L/K)$ takes the root of an irreducible polynomial to another such root.

If L/K is any extension then the composite $\prod \sigma(L)$ over all embeddings $\sigma : L \hookrightarrow \overline{K}$ is called the **normal** closure of L over K and is the smallest normal extension of K containing L. If L/K is separable then its normal closure is called the **Galois closure**.

Example 13. $\mathbb{Q}(\sqrt{m})$, $\mathbb{Q}(\sqrt{2}+\sqrt{2})$, cyclotomic fields, finite fields.