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5 Ideals under extension (continued)
(5.5) Splitting.

Proposition 1. Suppose M/L/K is a tower of number fields and p, q and r ideals of OK , OL and OM

respectively such that p | q | r. Then

er/p = er/qeq/p

fr/p = fr/qfq/p

Proof.

Definition 2. Let L/K be number fields. A prime ideal p of OK splits completely in OL if pOL = q1 . . . qn
where n = [L : K]. Say p is inert in OL if pOL is prime in OL.

Corollary 3. Let M/L/K be number fields and p a prime ideal of OK . If p splits completely in M then it
splits completely in L.

Proof. p splits completely in M iff for every r | p have er/p = fr/p = 1. The statement follows from the
previous proposition.

In fact the following also holds, but the general proof is beyond us (it uses analysis). (Most cases treated
on the problem set.)

Proposition 4. Suppose L,L′/K are number fields and p is a prime ideal of OK . Then p splits completely
in LL′ if and only if it splits completely in each of L and L′.

The following homework problem provides an algorithm for factoring prime ideals is almost all cases.

Theorem 5. Let L/K be number fields and p a prime ideal of K lying above the prime p of Z. Suppose
α ∈ OL such that L = K(α) and p - |OL/OK [α]|. Let f ∈ OK [X] be the minimal polynomial of α over
K with mod p decomposition f(X) ≡

∏
gi(X)ei (mod p) where gi mod p are distinct irreducibles. Then

pOL =
∏

qeii where qi = pOL + gi(α)OL are distinct prime ideals with fqi/p = deg gi.

(5.6) Ramification.

Definition 6. Let L/K be number fields and q | p prime ideals of OL and OK . Say that q/p is unramified
if eq/p = 1 and ramified otherwise. Say that it is totally ramified if fq/p = 1.

Say that p ramified in L if q/p is ramified for some q | p.

Example 7. From problem set 2: If K = Q(ζp) then (p)OK = (p, 1 + ζp)p−1 and so (p, 1 + ζp)/(p) is totally
ramified. If q 6= p is a prime of exact order r in the cyclic group F×p then (q)OK = q1 . . . q(p−1)/r and qi/(q)
is unramified.
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Theorem 8. Let K/Q be a number field. Then the prime p ramifies in K if and only if p | disc(K).

Proof. For now the “only if” direction, the other part begin deferred until after Galois theory.
Suppose q2 | (p)OK . Then (p)OK = qI where I is divisible by all the prime ideals dividing (p). Let

α ∈ I − (p). Then α ∈ q for every q | (p).
Let σ1, . . . , σn : K ↪→ C be the embeddings fixing Q and let L =

∏
σi(K) be the composite. For every

prime ideal q | (p) of OK write qOL =
∏

ri as a product of (not necessarily distinct) prime ideals of OL.
Since α ∈ q it follows that α ∈ ri and as q varies across the prime ideals dividing (p)OK , ri varies across the
prime ideals dividing (p)OL. Thus α ∈ r for every prime ideal r | (p) of OL.

For every σ = σi, σ(r) is also a prime ideal of σ(OL) = OL. Thus α ∈ σ(r) and so σ(α) ∈ r for every σ.
Suppose α1, . . . αn is an integral basis ofOK and α =

∑
miαi. Since α /∈ (p) it follows that at least onemi,

say m1 is not divisible by p. Now the determinant det(σi(α), σi(α2), . . . σi(αn))i=1,...,n is a linear combination
of products of elements of OL with at least one fact in r which implies that D = discK/Q(α, α2, . . . , αn),
which is the square of this determinant, must be in r for all r | (p) of OL. Thus D ∈ r ∩Q = (p).

But we’ve seen before that disc(α, α2, . . . , αn) = det(B)2 disc(α1, . . . , αn) = det(B)2 disc(K) where B is
the matrix taking α1, . . . , αn to α, α2, . . . , αn. Since det(B) = m1 is coprime to p is follows that p | disc(K)
as desired.

Remark 1. 1. If M/L/K are number fields and p is a prime ideal of OK which ramifies in L then p
ramifies in M .

2. If L/K are number fields, p a prime ideal of OK above p then p ramifies in L implies p | disc(L).

3. As a corollary only finitely many prime ideals of OK can ramify in L because the previous remark
implies that if p ramifies in L then p | disc(L)OK .

6 Galois Theory
(6.1) In the proof of the first part of the previous theorem we used the composite

∏
σ(K), an awkward

procedure which accounted for the fact that the embeddings of K into C fixing Q need not invary K.

Definition 9. An algebraic extension L/K of fields is said to be Galois if it is separable (i.e., every element
of L has a minimal polynomial over K with no double root) and normal (i.e., if an irreducible polynomial
in K[X] has one root in L then it has all roots in L).

Remark 2. It turns out that finite Galois extension can all be obtained by adjoining to K all the roots of a
polynomial with no double root.

Example 10.

Definition 11. The Galois group of a Galois extension L/K is Gal(L/K). It’s size is [L : K].

Fact 12. Suppose L/K is Galois. Then

1. |Gal(L/K)| = [L : K].

2. Gal(L/K) takes the root of an irreducible polynomial to another such root.

If L/K is any extension then the composite
∏
σ(L) over all embeddings σ : L ↪→ K is called the normal

closure of L over K and is the smallest normal extension of K containing L. If L/K is separable then its
normal closure is called the Galois closure.

Example 13. Q(
√
m), Q(

√
2 +
√

2), cyclotomic fields, finite fields.
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