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6 Galois theory (continued)
(6.1) Basics (continued)

Example 1. Examples of Galois extensions and Galois groups.

1. Q(
√
m)/Q has Galois group Z/2Z sending

√
m 7→ ±

√
m.

2. Q(
√

2 +
√

2)/Q has Galois group Z/4Z with generator sending
√

2 +
√

2 7→
√

2−
√

2 and
√

2−
√

2 7→
−
√

2 +
√

2.

3. Q( 3
√

2)/Q is not Galois but has Galois closure Q( 3
√

2, ζ3) whose Galois group over Q is S3 generated
by 3
√

2 7→ ζ3
3
√

2, ζ3 7→ ζ3 and 3
√

2 7→ 3
√

2, ζ3 7→ ζ23 .

4. The cyclotomic field Q(ζn)/Q has Galois group (Z/nZ)×. The Galois automorphism corresponding to
a ∈ (Z/nZ)× sends ζn 7→ ζan.

5. The finite field extension Fpn/Fpm (here m | n) is Galois with Galois group Z/ nmZ generated by φm

where φ : Fpn → Fpn is the “Frobenius” map φ(x) = xp.

(6.2) Prime ideals and the Galois group.

Proposition 2. Let L/K be a Galois extension of number fields.

1. σ ∈ Gal(L/K) acts on OL.

2. if q is a prime ideal of OL above a prime ideal p of OK then σ(q) is also a prime ideal of OL above p.

3. Gal(L/K) acts transitively on the set of prime factors of pOL.

4. if q, q′ | p then

eq/p = eq′/p

fq/p = fq′/p

5. If pOL =
∏r
i=1 q

e
i with e the common ramification index and f the common inertia index then ref =

[L : K].

Proof. First part: same polynomial.
Second part: if xy ∈ σ(q) then σ−1(x)σ−1(y) ∈ q and so x ∈ σ(q) or y ∈ σ(q). Thus σ(q) is a prime

ideal. Also σ(q) ∩K = σ(q ∩K) = σ(p) = p.
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Third part: Suppose q and q′ are distinct prime factors of pOL and q′ 6= σ(q) for all σ ∈ Gal(L/K). By
the Chinese Remainder Theorem we can find α ∈ OL such that

α ≡ 0 (mod q′)

α ≡ 1 (mod α(q))

for all α ∈ Gal(L/K). Then NL/K(α) =
∏
σi(α) ∈ q′ ∩ K = p. But σi(α) /∈ p ⊂ q for all σ giving a

contradiction.
Fourth part: If pOL =

∏
qeii then pOL =

∏
σ(qi)

ei . Since Gal(L/K) acts transitively it follows that
ei = ej for all i, j. Moreover, kqi

= kqj
by the same argument and so the equality of inertial indices follows.

Fifth part: immediate from
∑
eifi = [L : K].

(6.3) Main results of Galois theory.

Theorem 3. Suppose L/K is a Galois extension.

1. If L/M/K then L/M is Galois.

2. If H ⊂ Gal(L/K) is a subgroup then LH = {x ∈ L|σ(x) = x, ∀σ ∈ H} is a subfield L/LH/K.

3. We have Gal(L/LH) = H and LGal(L/M) = M .

4. The maps M 7→ Gal(L/M) and H 7→ LH are inverse bijections between the set of subextensions
L/M/K and the subgroups H ⊂ Gal(L/K).

5. M/K (or LH/K) is Galois if and only if Gal(L/M) (or H) is a normal subgroup of Gal(L/K), in
which case Gal(M/K) ∼= Gal(L/K)/Gal(L/M) (Gal(LH/K) ∼= Gal(L/K)/H).

Example 4. In class I did the subfields of Q( 3
√

2)/Q and the corresponding subgroups of S3. This is found
in any book on Galois theory.

(6.4) Decomposition groups.

Definition 5. Suppose L/K are number fields and q | p ideals of OL and OK . The decomposition group
Dq/p = {σ ∈ Gal(L/K)|σ(q) = q}. Then Dq/p = StabGal(L/K)(q).

Lemma 6. 1. If σ ∈ Gal(L/K) then σDq/pσ
−1 = Dσ(q)/p.

2. If p =
∏r
i=1 q

e
i then |Dq/p| = ef .

3. If σ ∈ Dq/p then σ induces an automorphism σ on kq which fixes kp. This yields a homomorphism
Dq/p → Gal(kq/kp).

Proof. Part 1: This is true of all group actions. This implies that all decomposition groups have the same
cardinality.

Part 2: Since Gal(L/K) acts transitively on the set of primes qi in pOL =
∏r
i=1 q

e
i it follows that

[L : K] = |Gal(L/K)| = r|Dq/p| and so |Dq/p| = ef . Here I use that if G acts on a finite set X and x ∈ X
has stabilizer H then Gx = (G/H)x has as many elements as the set G/H; if the action is transitive then
|X| = |G/H| and so |H| = |G|/|X|.

Part 3: Follows from definitions.

Definition 7. For q | p the inertia subgroup Iq/p is the kernel 0→ Iq/p → Dq/p → Gal(kq/kp). It consists
of σ ∈ Dq/p such that σ(x) ≡ x (mod q) for all x ∈ OL.
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