Introduction to Algebraic Number Theory Lecture 12

Andrei Jorza

2014-02-10

6 Galois theory (continued)

(6.1) Basics (continued)

Example 1. Examples of Galois extensions and Galois groups.

- 1. $\mathbb{Q}(\sqrt{m})/\mathbb{Q}$ has Galois group $\mathbb{Z}/2\mathbb{Z}$ sending $\sqrt{m} \mapsto \pm \sqrt{m}$.
- 2. $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ has Galois group $\mathbb{Z}/4\mathbb{Z}$ with generator sending $\sqrt{2+\sqrt{2}} \mapsto \sqrt{2-\sqrt{2}}$ and $\sqrt{2-\sqrt{2}} \mapsto -\sqrt{2+\sqrt{2}}$.
- 3. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois but has Galois closure $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ whose Galois group over \mathbb{Q} is S_3 generated by $\sqrt[3]{2} \mapsto \zeta_3 \sqrt[3]{2}, \zeta_3 \mapsto \zeta_3$ and $\sqrt[3]{2} \mapsto \sqrt[3]{2}, \zeta_3 \mapsto \zeta_3^2$.
- 4. The cyclotomic field $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ has Galois group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. The Galois automorphism corresponding to $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ sends $\zeta_n \mapsto \zeta_n^a$.
- 5. The finite field extension $\mathbb{F}_{p^n}/\mathbb{F}_{p^m}$ (here $m \mid n$) is Galois with Galois group $\mathbb{Z}/\frac{n}{m}\mathbb{Z}$ generated by ϕ^m where $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is the "Frobenius" map $\phi(x) = x^p$.
- (6.2) Prime ideals and the Galois group.

Proposition 2. Let L/K be a Galois extension of number fields.

- 1. $\sigma \in \operatorname{Gal}(L/K)$ acts on \mathcal{O}_L .
- 2. if \mathfrak{q} is a prime ideal of \mathcal{O}_L above a prime ideal \mathfrak{p} of \mathcal{O}_K then $\sigma(\mathfrak{q})$ is also a prime ideal of \mathcal{O}_L above \mathfrak{p} .
- 3. $\operatorname{Gal}(L/K)$ acts transitively on the set of prime factors of $\mathfrak{p}\mathcal{O}_L$.
- 4. if $q, q' \mid p$ then

$$e_{\mathfrak{q}/\mathfrak{p}} = e_{\mathfrak{q}'/\mathfrak{p}}$$
$$f_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}'/\mathfrak{p}}$$

5. If $\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^r \mathfrak{q}_i^e$ with e the common ramification index and f the common inertia index then ref = [L:K].

Proof. First part: same polynomial.

Second part: if $xy \in \sigma(\mathfrak{q})$ then $\sigma^{-1}(x)\sigma^{-1}(y) \in \mathfrak{q}$ and so $x \in \sigma(\mathfrak{q})$ or $y \in \sigma(\mathfrak{q})$. Thus $\sigma(\mathfrak{q})$ is a prime ideal. Also $\sigma(\mathfrak{q}) \cap K = \sigma(\mathfrak{q} \cap K) = \sigma(\mathfrak{p}) = \mathfrak{p}$.

Third part: Suppose \mathfrak{q} and \mathfrak{q}' are distinct prime factors of $\mathfrak{p}\mathcal{O}_L$ and $\mathfrak{q}' \neq \sigma(\mathfrak{q})$ for all $\sigma \in \operatorname{Gal}(L/K)$. By the Chinese Remainder Theorem we can find $\alpha \in \mathcal{O}_L$ such that

$$\begin{aligned} \alpha &\equiv 0 \pmod{\mathfrak{q}'} \\ \alpha &\equiv 1 \pmod{\alpha(\mathfrak{q})} \end{aligned}$$

for all $\alpha \in \operatorname{Gal}(L/K)$. Then $N_{L/K}(\alpha) = \prod \sigma_i(\alpha) \in \mathfrak{q}' \cap K = \mathfrak{p}$. But $\sigma_i(\alpha) \notin \mathfrak{p} \subset \mathfrak{q}$ for all σ giving a contradiction.

Fourth part: If $\mathfrak{p}\mathcal{O}_L = \prod \mathfrak{q}_i^{e_i}$ then $\mathfrak{p}\mathcal{O}_L = \prod \sigma(\mathfrak{q}_i)^{e_i}$. Since $\operatorname{Gal}(L/K)$ acts transitively it follows that $e_i = e_j$ for all i, j. Moreover, $k_{\mathfrak{q}_i} = k_{\mathfrak{q}_j}$ by the same argument and so the equality of inertial indices follows. Fifth part: immediate from $\sum e_i f_i = [L:K]$.

(6.3) Main results of Galois theory.

Theorem 3. Suppose L/K is a Galois extension.

- 1. If L/M/K then L/M is Galois.
- 2. If $H \subset \text{Gal}(L/K)$ is a subgroup then $L^H = \{x \in L | \sigma(x) = x, \forall \sigma \in H\}$ is a subfield $L/L^H/K$.
- 3. We have $\operatorname{Gal}(L/L^H) = H$ and $L^{\operatorname{Gal}(L/M)} = M$.
- 4. The maps $M \mapsto \operatorname{Gal}(L/M)$ and $H \mapsto L^H$ are inverse bijections between the set of subextensions L/M/K and the subgroups $H \subset \operatorname{Gal}(L/K)$.
- 5. M/K (or L^H/K) is Galois if and only if $\operatorname{Gal}(L/M)$ (or H) is a normal subgroup of $\operatorname{Gal}(L/K)$, in which case $\operatorname{Gal}(M/K) \cong \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M)$ ($\operatorname{Gal}(L^H/K) \cong \operatorname{Gal}(L/K)/H$).

Example 4. In class I did the subfields of $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ and the corresponding subgroups of S_3 . This is found in any book on Galois theory.

(6.4) Decomposition groups.

Definition 5. Suppose L/K are number fields and $\mathfrak{q} \mid \mathfrak{p}$ ideals of \mathcal{O}_L and \mathcal{O}_K . The **decomposition group** $D_{\mathfrak{q}/\mathfrak{p}} = \{\sigma \in \operatorname{Gal}(L/K) \mid \sigma(\mathfrak{q}) = \mathfrak{q}\}$. Then $D_{\mathfrak{q}/\mathfrak{p}} = \operatorname{Stab}_{\operatorname{Gal}(L/K)}(\mathfrak{q})$.

Lemma 6. 1. If $\sigma \in \operatorname{Gal}(L/K)$ then $\sigma D_{\mathfrak{q}/\mathfrak{p}} \sigma^{-1} = D_{\sigma(\mathfrak{q})/\mathfrak{p}}$.

- 2. If $\mathfrak{p} = \prod_{i=1}^r \mathfrak{q}_i^e$ then $|D_{\mathfrak{q}/\mathfrak{p}}| = ef$.
- 3. If $\sigma \in D_{\mathfrak{q}/\mathfrak{p}}$ then σ induces an automorphism σ on $k_{\mathfrak{q}}$ which fixes $k_{\mathfrak{p}}$. This yields a homomorphism $D_{\mathfrak{q}/\mathfrak{p}} \to \operatorname{Gal}(k_{\mathfrak{q}}/k_{\mathfrak{p}})$.

Proof. Part 1: This is true of all group actions. This implies that all decomposition groups have the same cardinality.

Part 2: Since $\operatorname{Gal}(L/K)$ acts transitively on the set of primes \mathfrak{q}_i in $\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^r \mathfrak{q}_i^e$ it follows that $[L:K] = |\operatorname{Gal}(L/K)| = r|D_{\mathfrak{q}/\mathfrak{p}}|$ and so $|D_{\mathfrak{q}/\mathfrak{p}}| = ef$. Here I use that if G acts on a finite set X and $x \in X$ has stabilizer H then Gx = (G/H)x has as many elements as the set G/H; if the action is transitive then |X| = |G/H| and so |H| = |G|/|X|.

Part 3: Follows from definitions.

Definition 7. For $\mathfrak{q} \mid \mathfrak{p}$ the inertia subgroup $I_{\mathfrak{q}/\mathfrak{p}}$ is the kernel $0 \to I_{\mathfrak{q}/\mathfrak{p}} \to D_{\mathfrak{q}/\mathfrak{p}} \to \operatorname{Gal}(k_{\mathfrak{q}}/k_{\mathfrak{p}})$. It consists of $\sigma \in D_{\mathfrak{q}/\mathfrak{p}}$ such that $\sigma(x) \equiv x \pmod{\mathfrak{q}}$ for all $x \in \mathcal{O}_L$.