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6 Galois Theory (continued)
(6.4) Suppose L/K is a Galois extension of number fields. Let p a prime ideal of OK and pOL =

∏r
i=1 q

e
i

with f = fq/p. Let LD = LDq/p and LI = LIq/p in which case we get extensions L/LI/LD/K. Let qI = q∩LI
and qD = q ∩ LD in which case q | qI | qD | p.

Theorem 1. We have eq/qI
= e and fqI/qD

= f . This implies that |Iq/p| = e and we get surjection in the
exact sequence 0→ Iq/p → Dq/p → Gal(kq/kp)→ 0.

Proof. First, [L : LD] = ef from the previous proposition and so [LD : K] = r. Since Gal(L/LD) = Dq/p

acts transitively on the primes above qD but acts trivially on q it follows that fq/qD
eq/qD

= [L : LD] = ef .
But e = eq/qD

eqD/p and f = fq/qD
fqD/p and so eqD/p = fqD/p = 1.

Next, if α ∈ OL then g(X) =
∏
σ∈Iq/p

(X − σ(α)) ∈ OLI [X]. Since σ(α) ≡ α (mod q) for σ ∈ Iq/p it

follows that g(X) ≡ (X−α)|Iq/p| (mod q) and so g(X)− (X−α)|Iq/p| ∈ kqI
[X]. The minimal polynomial of

α (mod q) over qI divides g(X) (mod q) and is irreducible and so it must be X − α (mod q) which implies
that α (mod q) ∈ kqI

. Therefore kq = kqI
. This implies that fq/qI

= 1.
Since the inertial index is multiplicative we deduce that fqI/qD

= fq/p. If k is the number of primes
of LI above qD then keqI/qD

fqI/qD
= [LI : LD] = [Dq/p : Iq/p] ≤ [kq : kp] = fq/p. We conclude that

k = eqI/qD
= 1 and so eq/qI

= eq/p.

Corollary 2. 1. p splits completely in LD

2. qD is inert in LI

3. q/qI is totally ramified.

Proof. First part: p splits completely in LD because eqD/p = fqD/p = 1.
Second part: since fqI/qD

= [LI : LD] it follows that the number of primes of LI above qD is 1 and
appears with exponent 1.

Third part: fq/qI
= 1.

Proposition 3. Suppose L/K, q | p, LI and LD as before.

1. LD is the largest subextension in which p splits completely (equivalently LD is the largest extension
with e and f equal to 1).

2. LI is the smallest subextension such that L/LI is totally ramified (equivalently LI is the largest exten-
sion in which p is unramified).
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Proof. First part: Suppose L/K ′/K such that p splits completely in K ′ and let H = GL/K′ . Let p′ = q∩K ′

in which case immediately from the definition it follows that D′ = Dq/p′ = Dq/p ∩ H and similarly I ′ =

Iq/p′ = Iq/p ∩H. Thus the tower L/LI/LD/K in the case of L/K ′ and q | p′ becomes L/LI
′
/LD

′
/K ′ with

LI
′
/LI and LD

′
/LD.

Since p splits completely in K ′ it follows that ep′/p = fp′/p = 1 and so eq/p′ = eq/p and fq/p′ = fq/p. This

implies that [L : LI
′
] = [L : LI ] and [LI

′
: LD

′
] = [LI : LD]. But since LD ⊂ LD

′
it follows that LD = LD

′

and so Dq/p ⊂ H. This gives K ′ ⊂ LD as desired.
Second part: suppose K ′/K is the largest subextension in which p is unramified. Then eq/p′ = eq/p and

the same argument as in the first part shows that LI ⊂ LI
′ ⊂ L are such that [L : LI

′
] = [L : LI ] which

implies that LI = LI
′
. But then K ′ ⊂ LI′ = LI as desired.

Corollary 4. Suppose L/K are number fields and p is a prime of OK . If p is unramified in L then it is
unramified in the Galois closure of L/K.

Proof. Let M/K be the normal closure of L/K. Since p is unramified in L it is also unramified in σ(L) for
every σ ∈ Gal(M/K). Therefore, if q | p is a prime of OM and M I = M Iq/p it follows that σ(L) ⊂ M I as
M I is the maximal extension in which p is unramified. This implies that M =

∏
σ(L) ⊂ M I which means

that p is unramified in M .
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