
Introduction to Algebraic Number Theory

Lecture 14

Andrei Jorza

2014-02-14

6 Galois Theory (continued)
(6.5) Frobenius. If L/K with ideals q | p such that q/p is unramified then Dq/p

∼= Gkq/kp .
Since Gkq/kp is cyclic generated by a lift of Frobq/p it follows that we may lift Frobq/p to Dq/p.

Lemma 1. If σ ∈ GL/K then Frobσ(q)/p = σ Frobq/p σ
−1 and thus the conjugacy class of Frobq/p is inde-

pendent of the choice of q. In particular if GL/K is abelian then Frobq/p as a Galois element does not depend
on q.

Proof. Follows from the fact that Dσ(q)/p = σDq/pσ
−1.

Example 2. If p 6= q are odd primes then Q(ζp) is unramified at q. Say r | q. What is Frobr/q ∈ Gal(K/Q)?

We know GK/Q ∼= F×p and if q has exact order r in F×p then fr/q = r and so Frobr/q(x) = xq in F×qr . Since

ζp ∈ F×qr it follows that Frobr/q(ζp) = ζqp and so Frobr/q has image q ∈ F×p .

(6.6) Quadratic reciprocity. Let p be an odd prime and p - a. If x2 ≡ a (mod p) has a solution with

x ∈ Z write

(
a

p

)
= 1; otherwise write

(
a

p

)
= −1. This is called the Legendre symbol and has numerous

applications including in cryptography.

Theorem 3 (Quadratic reciprocity). If p 6= q are odd primes then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

We begin with a lemma.

Lemma 4. Let p 6= q be two odd primes and write p∗ = (−1)(p−1)/2p. Then q splits completely in Q(
√
p∗)

if and only if it splits into an even number of primes in Q(ζp).

Proof. Let K = Q(
√
p∗) ⊂ L = Q(ζp). If qOK = q1q2 then there exists σ ∈ GK/Q such that σ(q1) = q2.

Since GK/Q ∼= GL/Q/GL/K (as GL/Q is abelian) we can lift σ to σ ∈ GL/Q. Then σ takes the prime
factorization q1OL =

∏
rj (recall that q is unramified in L) and yield q2OL =

∏
σ(ri) which implies that

qOL splits into an even number of primes of L.
Reciprocally, suppose qOL =

∏r
i=1 ri where r is even. Then Dri/q has index r in GL/Q. Since GL/Q ∼=

F×p ∼= Z/(p − 1)Z it follows that GL/Q/Dri/q is a cyclic abelian group of even order and so has a quotient
isomorphic to Z/2Z. Since Z/(p−1)Z has a unique quotient isomorphic to Z/2Z it follows that this quotient
is GK/Q and thus GK ⊃ GL/LD where LD = LDri/q .

We already know that q splits completely in LD and so, since K is a subfield, it must split completely in
K as well, as desired.

1



Proof of Theorem: We already showed that x2 ≡ −1 (mod p) has a root iff p ≡ 1 (mod 4). Thus

(
−1

p

)
=

(−1)
p−1
2 . Since q 6= 2 we can study its splitting in Q(

√
p∗) using the polynomial X2 − p∗ (mod q) and q

splits completely iff

(
p∗

q

)
= 1. By the lemma this occurs iff q splits into an even number of primes in L.

But we know how to split in Q(ζp): if u is the order of q in F×p then q splits into (p − 1)/u primes. This

number of primes is even iff 2 | (p− 1)/u iff u | (p− 1)/2 in which case we’d have q(p−1)/2 ≡ 1 (mod p). Let
g be a generator of F×p and q ≡ gm (mod p). Then q(p−1)/2 ≡ gm(p−1)/2 ≡ 1 iff m is even as g has order

p− 1, i.e.,

(
q

p

)
= 1. Thus

(
p∗

q

)
=

(
q

p

)
.

Now we’re done since

(
a

p

)
is multiplicative:

(
p

q

)(
q

p

)
=

(
p∗

q

)(
(−1)(p−1)/2

q

)(
q

p

)
=

(
−1

q

) p−1
2

= (−1)
p−1
2

q−1
2

(6.7) Higher ramification.

Definition 5. Suppose L/K is a Galois extension of number fields and q | p are prime ideals of OL and
OK . Let Vm = {σ ∈ Dq/p|σ(x) ≡ x (mod qm+1)}. Under this notation Iq/p = V0. These are called higher
ramification groups. The group V1 is called the “wild inertia” group and is denoted Pq/p.

Theorem 6. Suppose L/K, q | p and Vm as above.

1. For m ≥ 0 the group Vm is normal in Dq/p.

2. The filtration V0 ⊃ V1 ⊃ . . . is separated, i.e., ∩Vm = {1}.

3. Have injections Iq/p/Pq/p ↪→ k×q and for m ≥ 1, Vm/Vm+1 ↪→ kq.

4. Pq/p is the p-Sylow subgroup of Iq/p.

Proof. . . .

Definition 7. We say that q/p is tamely ramified if p - eq/p or equivalently is Pq/p = {1}. We say that q/p
is wildly ramified otherwise, and totally wildly ramified if I = P .

Corollary 8. The group Dq/p is solvable.

(6.8) Different.

Definition 9. Suppose L/K are number fields and I is a fractional ideal of L. The dual I∨ under the trace
pairing is defined as

I∨ = {x ∈ L|(x, I)L/K ⊂ OK}

Proposition 10. 1. The dual O∨L is a fractional ideal of L.

2. For any fractional ideal I, the dual I∨ is a fractional ideal and I∨ = I−1O∨L.

3. Have I∨∨ = I.
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Definition 11. Let L/K be number fields. The different is the (fractional) ideal DL/K = (O∨L)−1.

Remark 1. Since TrL/K(OL) ⊂ OK it follows that OL ⊂ O∨L and so DL/K ⊂ OL is an ideal.

Theorem 12. Suppose L/K are number fields and q | p prime ideals of OL and OK . Then:

1. q/p is ramified if and only if q | DL/K .

2. If q/p is tamely ramified then vq(DL/K) = eq/p − 1.

3. If q/p is totally ramified then

vq(DL/K) =
∑
m≥0

(|Vm| − 1)

4. If q/p is wildly but not necessarily totally ramified then at least vq(DL/K) ≥ eq/p.

Proof. . . .

(6.9) A geometric perspective.
Consider the multiplication map OL ⊗OK

OL → OL with kernel I. The differentials Ω1
OL/OK

= I/I2.

and one can show that DL/K = AnnOL
(Ω1
OL/OK

).
On the geometric side suppose you have a finite cover X → Y of Riemann surfaces. Prime ideals of OK

or OL correspond to points or curves in Y or X and prime decomposition is simply computing the preimage.
Having prime ideal divide the different is equivalent to having that prime ideal contain the annihilator of
Ω1
OL/OK

which is equivalent to saying that the prime ideal is in the support of Ω1
OL/OK

. On the geometric side

would be equivalent to saying that the curve is contained in the support of Ω1
X/Y which is the ramification

locus.
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