Introduction to Algebraic Number Theory Lecture 15

Andrei Jorza

6 Galois theory (continued)

(6.9) Back to ramification.

Theorem 1. Let K / \mathbb{Q} be a number field and p a prime. Then p ramifies in K iff $p \mid \operatorname{disc}(K)$.
Proof. We already proved one direction.
Now the other direction: suppose $p \mid \operatorname{disc}(K)$. Let α_{i} be an integral basis of \mathcal{O}_{K}. It follows that the rows of $\left(\left(\alpha_{i}, \alpha_{j}\right)\right)$ must have a nontrivial dependence $\bmod p$ since p divides the determinant. There exist integers m_{i}, not all divisible by p, such that $\sum m_{i}\left(\alpha_{i}, \alpha_{j}\right) \equiv 0(\bmod p)$ for all j. Say $p \nmid m_{1}$ and let $\alpha=\sum m_{i} \alpha_{i}$. Thus $(\alpha, x) \equiv 0(\bmod p)$ for all $x \in \mathcal{O}_{K}$ with $\alpha \notin(p) \mathcal{O}_{K}$.

If p were unramified in K then $(p)=\prod \mathfrak{q}_{i}$ where \mathfrak{q}_{i} are distinct prime ideals of \mathcal{O}_{K}. If $\alpha \in \mathfrak{q}_{i}$ for all i then $\alpha \in \cap \mathfrak{q}_{i}=\prod \mathfrak{q}_{i}$ which cannot be. Say $\alpha \notin \mathfrak{q}=\mathfrak{q}_{1}$.

Let L / \mathbb{Q} be the normal closure of K / \mathbb{Q}. Since p is unramified in K it is also unramified in L. As before this implies that $\alpha \notin \mathfrak{q}$ for some $\mathfrak{q} \mid p$ an ideal of \mathcal{O}_{L}. Then

$$
\begin{aligned}
\operatorname{Tr}_{L / \mathbb{Q}}\left(\alpha \Omega_{L}\right) & =\operatorname{Tr}_{K / \mathbb{Q}} \circ \operatorname{Tr}_{L / K}\left(\alpha \mathcal{O}_{L}\right) \\
& =\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha \operatorname{Tr}_{L / K}\left(\mathcal{O}_{L}\right)\right) \\
& \subset \operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha \mathcal{O}_{K}\right) \\
& \subset p \mathbb{Z} \\
& \subset \mathfrak{q}
\end{aligned}
$$

Choose $\beta \in(p) \mathfrak{q}^{-1}-\mathfrak{q}$. Then $\alpha \beta \mathcal{O}_{L} \subset(p) \mathfrak{q}^{-1}-\mathfrak{q}$. If $\sigma \in G_{L / \mathbb{Q}}-D_{\mathfrak{q} / p}$ then $\sigma(\mathfrak{q}) \neq \mathfrak{q}$ and so $\sigma\left(\alpha \beta \mathcal{O}_{L}\right) \subset \mathfrak{q}$ because $(p) \sigma(\mathfrak{q})^{-1}$ contains \mathfrak{q} as a factor. Therefore

$$
\sum_{\sigma \in D_{\mathfrak{q} / p}} \sigma\left(\alpha \beta \mathcal{O}_{L}\right)=\operatorname{Tr}_{L / \mathbb{Q}}\left(\alpha \beta \mathcal{O}_{L}\right)-\sum_{\sigma \notin D_{\mathfrak{q} / p}} \sigma\left(\alpha \beta \mathcal{O}_{L}\right) \in \mathfrak{q}
$$

Therefore $\sum_{\sigma \in D} \sigma\left(\alpha \beta \mathcal{O}_{L}\right) \equiv 0$ in $k_{\mathfrak{q}}$ where we use the identification $D_{\mathfrak{q} / p} \cong \operatorname{Gal}\left(k_{\mathfrak{q}} / k_{(p)}\right)$ from the fact that p is unramified in L. By choice $\alpha \beta \notin \mathfrak{q}$ and so is a unit in $k_{\mathfrak{q}}$ which implies that $\sum_{\sigma \in D} \sigma(x)=0$ for all $x \in k_{\mathfrak{q}}$ which cannot be by linear independence of characters.

7 The Class Group

(7.1) Finiteness of the class group.

Definition 2. Let K be a number field. We already know that the fractional ideals of K from a group. The class group $\mathrm{Cl}(K)$ of K is the quotient of the group of fractional ideals by the (normal) subgroup of principal fractional ideals. If K is a number field then the class number is $h_{K}=|\mathrm{Cl}(K)|$.

From the definition \mathcal{O}_{K} is a PID if and only if $\mathrm{Cl}(K)=1$ iff $h_{K}=1$.

Theorem 3. Let K be a number field.

1. Suppose there exists $\lambda>0$ such that for every fractional ideal I there exists $\alpha \in I$ with $\left|N_{K / \mathbb{Q}}(\alpha)\right| \leq$ $\lambda\|I\|$. Then $\mathrm{Cl}(K)$ is finite and is generated by prime ideals dividing $(n) \mathcal{O}_{K}$ for $n \leq \lambda$.
2. Such a λ exists and it has an effective albeit inefficient value.

Proof. Part one: First note that if the assumption is satisfied by ideals then it is also satisfied by fractional ideals because we proved before that $\|(a) I\|=\mid N_{K / \mathbb{Q}}(a)\| \| I \|$ and some multiple of a fractional ideal is an ideal.

Let I be any fractional ideal and let $\alpha \in I^{-1}$ be such that $\left|N_{K / \mathbb{Q}}(\alpha)\right| \leq \lambda\left\|I^{-1}\right\|$. Then $J=(\alpha) I \subset$ $I^{-1} I=\mathcal{O}_{K}$ has the property that $\|J\|=\left|N_{K / \mathbb{Q}}(\alpha)\right|\|I\| \leq \lambda\left\|I^{-1}\right\|\|I\|=\lambda$. Denoting $[I]$ the image of the fractional ideal I in $\mathrm{Cl}(K)$ it follows that some ideal $J \in[I]$ has the property that $\|J\| \leq \lambda$.

The finiteness of $\mathrm{Cl}(K)$ is immediate: indeed, if $\|J\|=n \leq \lambda$ then \mathcal{O}_{K} / J has n elements. But \mathcal{O}_{K} is a finite free \mathbb{Z}-module and only finitely many quotients of $\mathbb{Z}^{[K: \mathbb{Q}]}$ have cardinality n.

If \mathfrak{p} is a prime ideal of \mathcal{O}_{K} lying above the prime p of \mathbb{Z} then $\|\mathfrak{p}\|=p^{f_{\mathfrak{p}} / p}$. Thus if $J=\prod \mathfrak{p}_{i}^{e_{i}}$ then $\|J\|=\prod p_{i}^{e_{i} f_{\mathfrak{p}_{i} / p_{i}}}$ and every prime factor of J must lie above n.

Part two: Let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis of \mathcal{O}_{K} and $\sigma_{1}, \ldots, \sigma_{n}: K \hookrightarrow \overline{\mathbb{Q}}$ be the embeddings fixing \mathbb{Q}. Then $\lambda=\prod_{i} \sum_{j}\left|\sigma_{i}\left(\alpha_{j}\right)\right|$ will work. Indeed, let $m=\lfloor\sqrt[n]{\| I| |}\rfloor$. The set $\left\{\sum_{j=1}^{n} m_{j} \alpha_{j} \mid 0 \leq m_{i} \leq m\right\} \subset \mathcal{O}_{K}$ has $(m+1)^{n}>\|I\|$ elements and so at least two elements must be congruent $\bmod I$. Let α be the difference of these two elements in which case $\alpha=\sum k_{j} \alpha_{j}$ with $-m \leq k_{i} \leq m$ and $\alpha \in I$. But then

$$
\begin{aligned}
\left|N_{K / \mathbb{Q}}(\alpha)\right| & =\prod_{i}\left|\sigma_{i}\left(\sum k_{j} \alpha_{j}\right)\right| \\
& \leq \prod_{i} \sum_{j}\left|k_{j}\right|\left|\sigma_{i}\left(\alpha_{j}\right)\right| \\
& \leq m^{n} \lambda \\
& \leq \lambda\|I\|
\end{aligned}
$$

Remark 1. The explicit value of λ obtained above is effective in that for every K it can be computed but it is inefficient in that it's value can be large.

