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7 The Class Group (continued)

Theorem 1. If K is a number field with r real and 2s complex embeddings then we may choose
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)s√
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Proof. Let E be the region of Rn given by

|x1|+ · · ·+ |xr|+ 2
√
x2r+1 + x2r+2 + · · ·+ 2

√
x2r+2s−1 + x2r+2s ≤ n

n
√
λ||I||

where λ as in the statement of the theorem. Then E is centrally symmetric and convex (given by inequalities
of a function which increases in all directions) and by the lemma we compute

vol(E) =
2r−sπsnn||I||
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= 2r+s||I||
√
|disc(K)|

It suffices to check that vol(E) > 2n vol(I) since then E ∩ I would have a nonzero vector α which would
then satisfy |NK/Q(α)| ≤ λ||I||. But

vol(I) = vol(Rn/ι(I))

= [OK : I] vol(Rn/ι(OK))

= ||I||2−s
√
|disc(K)|

from where the inequality vol(E) > 2n vol(I) is immediate.
The only thing to check is that vol(Rn/ι(OK)) = 2−s

√
|disc(K)| and this is left as an exercise. (The

idea is that is e1, . . . , en is an integral basis of OK over Z then

vol(Rn/ι(OK)) = |det(σ1(ej), . . . , σr(ej),Reσr+1(ei), Imσr+1(ei), . . .)|
= 2−s det(σ1(ej), . . . , σr(ej), σr+1(ei), σr+1(ei), . . .)

= 2−s
√
|disc(K)|

since the discriminant is the square of the matrix of embeddings.

Corollary 2. If K is a number field with 2s complex embeddings then

|disc(K)| ≥ nn

n!

(π
4

)s
In particular if K 6= Q then K/Q ramifies at some prime.
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Proof. The inequality follows from the fact that the Minkowski bound ≥ 1 or else we would get no ideals at
all. If n = [K : Q] ≥ 2 then the RHS in the inequality is ≥ 2 and we know that K/Q ramifies at primes
dividing the nonunit discriminant.

(7.3) Computing class groups.

Example 3. The class group of K = Q(
√
−21) is Cl(K) ∼= Z/2Z× Z/2Z.

Proof. Computing the Minkowski bound for K gives λ = 5.8 . . . and so to find the ideals J (representing the
classes in Cl(K)) with ||J || ≤ 5 it suffices to factor 2, 3, 5 in OK . Using the problem from the homework 3,
we factor x2 + 21 mod 2, 3, 5 and get (since disc(K) = −22 · 3 · 7)

(2)OK = (2, 1 +
√
−21)2

(3)OK = (3,
√
−21)2

(5)OK = (5, 2 +
√
−21)(5, 2−

√
−21)

Let q2 = (2, 1 +
√
−21), q3 = (3,

√
−21) and q5 = (5, 2 +

√
−21). We first check that they are not principal,

and only do it for the first ideal. Indeed, if q2 = (α) then |NK/Q(α)| = ||q2|| =
√
||(2)OK || = ||(2)Z|| = 2

but α = x+ y
√
−21 can never have norm 2 (or 3 or 5).

Next, it’s quick to see (play around with generators) that q2q3 = (6, 2
√
−21) which again is not principal

because it has norm 6 whereas x2 + 21y2 cannot be 6. Moreover, q2q3q5 = (6, 2
√
−21)(5, 2 +

√
−21) =

(30, 3−
√
−21) = (3−

√
−21) since NK/Q(3−

√
−21) = 30.

Let a, b, c be the images of q2, q3, q5 in Cl(K). Then a2 = b2 = 1 and abc = 1 and cc = 1. We know
that every class in Cl(K) has an ideal which is a product of prime ideals whose image in Cl(K) is a product
of powers of a, b, c. Since c = c−1 = ab it follows that the only possibilities are {1, a, b, ab} and the result
follows.

(7.4) A little class field theory.

Theorem 4 (The Hilbert Class Field). Let K be a number field. There exists a finite Galois extension of
number fields H/K (called the Hilbert class field) such that

1. [H : K] = hK ;

2. Gal(H/K) is an abelian group;

3. H/K is unramified at all prime ideals p of OK ;

4. If L/K is any other finite Galois extension with abelian Galois group and which is everywhere unram-
ified then L ⊂ H.

5. Every ideal I of OK becomes principal in OH , i.e., IOH is principal.

Example 5. From the homework K = Q(
√

15) has the extension H = Q(
√

3,
√

5) which is quadratic and so
abelian Galois over K and is everywhere unramified over K. Since hK = 2 it follows that H is the Hilbert
class field of K.

One typical application is the following result about class numbers of cyclotomic fields.

Corollary 6. If m | n then Q(ζm) ⊂ Q(ζn) and hQ(ζm) | hQ(ζn).

The study of class numbers of cyclotomic fields is very rich and we mention two results, of which the first
one is straightforward while the second one is very deep and difficult.

Theorem 7 (Kummer). Suppose p is a prime number which does not divide hQ(ζp). Then xp + yp = zp has
no nontrivial integer solutions.
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Theorem 8 (Iwasawa). Suppose K is a number field. Then there exist integers λ, µ ≥ 0 and ν such that
for n large enough

vp(hK(ζpn )) = λn+ µpn + ν

When K/Q is Galois it is conjectured that µ = 0 and this is known when the Galois group over Q is an
abelian group (by Ferrero-Washington).
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