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8 Units
(8.1) The purpose of this section is to prove the following theorem of Dirichlet:

Theorem 1 (Dirichlet unit theorem). Suppose K is a number field with r real and 2s complex embeddings.
Then O×K is a finitely generated abelian group of rank r + s− 1.

Remark 1. Note that α ∈ O×K iff NK/Q(α) = ±1.

Example 2. K = Q(
√
m) with m > 0. Then r = 2, s = 0 and the real quadratic field K has rank 1 unit

group. E.g., O×Q(
√
2)

= ±(2 +
√

3)Z.

Example 3. K = Q(
√
m) with m < 0. Then r = 0, s = 1 and the imaginary quadratic number field K has

finite unit group. E.g., O×Q(ζ3)
= {±1,±ζ3,±ζ23}.

Example 4. K = Q( 3
√

2) has r = 1, s = 1 and so O×Q( 3√2)
has rank 1. It turns out O×Q( 3√2)

= ±( 3
√

2− 1)Z.

Example 5. For a more complicated example, take K = Q(
√

3,
√

5). Then O×K has rank 3 and in fact

O×K = ±

(
1 +
√

5

2

)Z(
1 +
√

5

2
−
√

3

)Z(
1 +
√

5

2
−
√

3− 1

)Z

Example 6. K = Q(ζpn) for p a prime. Then K is a quadratic extension of the real subfield K+ =
Q(ζpn + ζ−1pn ) = Q(cos(2π/pn)). All the embeddings of K+ are real and K = K+(i sin(2π/pn)) and so all
the pn−1(p − 1) embeddings of K are complex. Thus s = pn−1(p − 1)/2 but we can no longer describe the
s generators of O×K explicitly. However, we can say that O×K has a finite index subgroup generated (as a

group) by ζpn and ζ
1−a
2

pn
1− ζapn
1− ζpn

= ± sin(πa/pn)

sin(π/pn)
for 1 < a < pn/2 coprime to p.

Remark 2. If K/Q is Galois then either r = 0 or s = 0 as the Galois group acts transitively (and in fact can
be identified with) the set of embeddings into C.

(8.2) To understand the class group of K we used the embedding ι : K → Rn taking OK to the lattice
Λ and we implicitly used that this embedding was additive. To study O×K we would like to transform the
unpleasant multiplicative on O×K to a much more usable additive structure on a vector space.

Consider the map log : Rn → Rr+s given by

log((x1, . . . , xr+2s)) = (log |x1|, . . . , log |xr|, log(x2r+1 + x2r+2), . . .)

and
∑

: Rr+s → R given by
∑

(x1, . . . , xr+s) = x1 + · · ·+ xr+s.

Lemma 7. 1. The composite map log ◦ι : K× → Rn is additive, i.e., log(ι(xy)) = log(ι(x)) + log(ι(y)).

2. The image of O×K lies in a hyperplane: log(ι(O×K)) ⊂ ∆ where ∆ = {(x1, . . . , xr+s)|x1+· · ·+xr+s = 0}.
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3. The additive subgroup log(ι(O×K)) ⊂ ∆ is a discrete abelian subgroup and thus a lattice of rank d ≤
rank(∆) = r + s− 1.

Lemma 8. Part one follows from the definition. Part two uses the fact that α ∈ O×K iff |NK/Q(α)| = 1 and∑
log(ι(α)) = log |NK/Q(α)|. For part three: the preimage under log of any open subset of ∆ is an open

subset of Rn which contains finitely many ι(α) for α ∈ O×K as ι(OK) is a lattice in Rn.

(8.3) O×K vs log ι(O×K).

Proposition 9. The kernel of log ◦ι|OK−0 consists of the roots of unity in K and is finite. Thus O×K is a
finitely generated abelian group of the same rank as log ι(O×K).

Proof. If α ∈ OK − 0 has log ι(α) = 0 then |σ(α)| = 1 for all embeddings σ : K ↪→ C. The minimal
polynomial of α is Pα(X) =

∏
(X − σ(α)) = Xn + an−1X

n−1 + · · ·+ a1X + a0 ∈ Z[X] and

|an−j | = |
∑

i1<...<ij

σi1(α) · · ·σij (α)| ≤
∑

i1<...<ij

1 =

(
n

j

)

and so Pα(X) is in the finite set F = {Xn +an−1X
n−1 + · · ·+a1X +a0 ∈ Z[X]||an−j ≤

(
n
j

)
}. But the same

is true of Pαk for all k since the Galois conjugates of αk are αki . Thus Pαk is in the same set. Since there are

infinitely many choices for k it follows that αk = αk
′

for at least two k 6= k′ and thus α is a root of unity.
If ζn ∈ K then Q(ζn) ⊂ K and so ϕ(n) = [Q(ζn) : Q] ≤ [K : Q] which puts a bound on n and so K

contains finitely many roots of unity.
Therefore log ι(O×K) ∼= O×K/µ(K) where µ(K) is the finite group of roots of unity in K and the conclusion

follows.
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