Introduction to Algebraic Number Theory Lecture 18

Andrei Jorza

8 Units

(8.1) The purpose of this section is to prove the following theorem of Dirichlet:

Theorem 1 (Dirichlet unit theorem). Suppose K is a number field with r real and 2s complex embeddings. Then \mathcal{O}_K^{\times} is a finitely generated abelian group of rank r + s - 1.

Remark 1. Note that $\alpha \in \mathcal{O}_K^{\times}$ iff $N_{K/\mathbb{Q}}(\alpha) = \pm 1$.

Example 2. $K = \mathbb{Q}(\sqrt{m})$ with m > 0. Then r = 2, s = 0 and the real quadratic field K has rank 1 unit group. E.g., $\mathcal{O}_{\mathbb{Q}(\sqrt{2})}^{\times} = \pm (2 + \sqrt{3})^{\mathbb{Z}}$.

Example 3. $K = \mathbb{Q}(\sqrt{m})$ with m < 0. Then r = 0, s = 1 and the imaginary quadratic number field K has finite unit group. E.g., $\mathcal{O}_{\mathbb{Q}(\zeta_3)}^{\times} = \{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}.$

Example 4. $K = \mathbb{Q}(\sqrt[3]{2})$ has r = 1, s = 1 and so $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}^{\times}$ has rank 1. It turns out $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}^{\times} = \pm(\sqrt[3]{2}-1)^{\mathbb{Z}}$.

Example 5. For a more complicated example, take $K = \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Then \mathcal{O}_K^{\times} has rank 3 and in fact

$$\mathcal{O}_K^{\times} = \pm \left(\frac{1+\sqrt{5}}{2}\right)^{\mathbb{Z}} \left(\frac{1+\sqrt{5}}{2} - \sqrt{3}\right)^{\mathbb{Z}} \left(\frac{1+\sqrt{5}}{2} - \sqrt{3} - 1\right)$$

Example 6. $K = \mathbb{Q}(\zeta_{p^n})$ for p a prime. Then K is a quadratic extension of the real subfield $K^+ = \mathbb{Q}(\zeta_{p^n} + \zeta_{p^n}^{-1}) = \mathbb{Q}(\cos(2\pi/p^n))$. All the embeddings of K^+ are real and $K = K^+(i\sin(2\pi/p^n))$ and so all the $p^{n-1}(p-1)$ embeddings of K are complex. Thus $s = p^{n-1}(p-1)/2$ but we can no longer describe the s generators of \mathcal{O}_K^{\times} explicitly. However, we can say that \mathcal{O}_K^{\times} has a finite index subgroup generated (as a group) by ζ_{p^n} and $\zeta_{p^n}^{\frac{1-a}{2}} \frac{1-\zeta_{p^n}^a}{1-\zeta_{p^n}} = \pm \frac{\sin(\pi a/p^n)}{\sin(\pi/p^n)}$ for $1 < a < p^n/2$ coprime to p.

Remark 2. If K/\mathbb{Q} is Galois then either r = 0 or s = 0 as the Galois group acts transitively (and in fact can be identified with) the set of embeddings into \mathbb{C} .

(8.2) To understand the class group of K we used the embedding $\iota : K \to \mathbb{R}^n$ taking \mathcal{O}_K to the lattice Λ and we implicitly used that this embedding was additive. To study \mathcal{O}_K^{\times} we would like to transform the unpleasant multiplicative on \mathcal{O}_K^{\times} to a much more usable additive structure on a vector space.

Consider the map $\log : \mathbb{R}^n \to \mathbb{R}^{r+s}$ given by

 $\log((x_1, \dots, x_{r+2s})) = (\log |x_1|, \dots, \log |x_r|, \log(x_{r+1}^2 + x_{r+2}^2), \dots)$

and $\sum : \mathbb{R}^{r+s} \to \mathbb{R}$ given by $\sum (x_1, \dots, x_{r+s}) = x_1 + \dots + x_{r+s}$.

Lemma 7. 1. The composite map $\log \circ \iota : K^{\times} \to \mathbb{R}^n$ is additive, i.e., $\log(\iota(xy)) = \log(\iota(x)) + \log(\iota(y))$.

2. The image of \mathcal{O}_K^{\times} lies in a hyperplane: $\log(\iota(\mathcal{O}_K^{\times})) \subset \Delta$ where $\Delta = \{(x_1, \ldots, x_{r+s}) | x_1 + \cdots + x_{r+s} = 0\}$.

3. The additive subgroup $\log(\iota(\mathcal{O}_K^{\times})) \subset \Delta$ is a discrete abelian subgroup and thus a lattice of rank $d \leq \operatorname{rank}(\Delta) = r + s - 1$.

Lemma 8. Part one follows from the definition. Part two uses the fact that $\alpha \in \mathcal{O}_K^{\times}$ iff $|N_{K/\mathbb{Q}}(\alpha)| = 1$ and $\sum \log(\iota(\alpha)) = \log |N_{K/\mathbb{Q}}(\alpha)|$. For part three: the preimage under log of any open subset of Δ is an open subset of \mathbb{R}^n which contains finitely many $\iota(\alpha)$ for $\alpha \in \mathcal{O}_K^{\times}$ as $\iota(\mathcal{O}_K)$ is a lattice in \mathbb{R}^n .

(8.3) \mathcal{O}_K^{\times} vs log $\iota(\mathcal{O}_K^{\times})$.

Proposition 9. The kernel of $\log \circ \iota|_{\mathcal{O}_K-0}$ consists of the roots of unity in K and is finite. Thus \mathcal{O}_K^{\times} is a finitely generated abelian group of the same rank as $\log \iota(\mathcal{O}_K^{\times})$.

Proof. If $\alpha \in \mathcal{O}_K - 0$ has $\log \iota(\alpha) = 0$ then $|\sigma(\alpha)| = 1$ for all embeddings $\sigma : K \hookrightarrow \mathbb{C}$. The minimal polynomial of α is $P_{\alpha}(X) = \prod (X - \sigma(\alpha)) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \in \mathbb{Z}[X]$ and

$$|a_{n-j}| = |\sum_{i_1 < \dots < i_j} \sigma_{i_1}(\alpha) \cdots \sigma_{i_j}(\alpha)| \le \sum_{i_1 < \dots < i_j} 1 = \binom{n}{j}$$

and so $P_{\alpha}(X)$ is in the finite set $\mathcal{F} = \{X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \in \mathbb{Z}[X] || a_{n-j} \leq {n \choose j}\}$. But the same is true of P_{α^k} for all k since the Galois conjugates of α^k are α_i^k . Thus P_{α^k} is in the same set. Since there are infinitely many choices for k it follows that $\alpha^k = \alpha^{k'}$ for at least two $k \neq k'$ and thus α is a root of unity.

If $\zeta_n \in K$ then $\mathbb{Q}(\zeta_n) \subset K$ and so $\varphi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] \leq [K : \mathbb{Q}]$ which puts a bound on n and so K contains finitely many roots of unity.

Therefore $\log \iota(\mathcal{O}_K^{\times}) \cong \mathcal{O}_K^{\times}/\mu(K)$ where $\mu(K)$ is the finite group of roots of unity in K and the conclusion follows.