Introduction to Algebraic Number Theory Lecture 19

Andrei Jorza

8 Units (continued)

(3.1) Proof of the Dirichlet unit theorem.

Lemma 1. 1. There exists a constant λ (in fact $\lambda=\log \left(2^{s} \pi^{-s} \sqrt{|\operatorname{disc}(K)|}\right)$) such that for any index k between 1 and $r+s$ and any $\alpha=\left(a_{1}, \ldots, a_{r+s}\right) \in \log \iota\left(\mathcal{O}_{K}-0\right)$ there exists $\beta=\left(b_{1}, \ldots, b_{r+s}\right) \in$ $\log \iota\left(\mathcal{O}_{K}^{\times}-0\right)$ with $\sum \beta<\lambda$ and $b_{i}<a_{i}$ for all $i \neq k$.
2. For any index k there exists $\alpha=\left(u_{1}, \ldots, u_{r+s}\right) \in \log \mathcal{O}_{K}^{\times}$such that $u_{i}<0$ when $i \neq k$.

Proof. Part one follows from a geometry of numbers type argument. Here's a sketch: choose c_{i} such that $c_{i}<\exp \left(a_{i}\right)$ for $i \neq k$ and choose c_{k} such that $\prod c_{i}=\exp (\lambda)$. Then finding β as desired is equivalent to finding $x=\left(x_{1}, \ldots, x_{n}\right) \in \iota\left(\mathcal{O}_{K}-0\right)$ such that $\left|x_{i}\right|<c_{i}$ for $i \leq r$ and $x_{r+2 i-1}^{2}+x_{r+2 i}^{2}<c_{r+i}$ for $i>0$. The geometry of numbers requires only that the volume of this region be $>2^{n} \operatorname{vol}\left(\iota\left(\mathcal{O}_{K}\right)\right)$ and the volume can be shown to depend only on λ. For example, if $K=\mathbb{Q}(\sqrt{m}), m>0$ then $\mathbb{R}^{n}=\mathbb{R}^{r+s}=\mathbb{R}^{2}$ and the region $\left|x_{i}\right| \leq c_{i}$ with $c_{1} \exp \left(a_{1}\right)$ and $c_{1} c_{2}=\exp (\lambda)$ has area $4 c_{1} c_{2}=4 \exp (\lambda)$.

Part two: part one allows us to construct a sequence $\alpha_{m}=\left(a_{m, 1}, \ldots, a_{m, r+s}\right) \ni \log \iota\left(\mathcal{O}_{K}-0\right)$ with $\left(a_{m, i}\right)_{m}$ decreasing for $i \neq k$ and $\sum \alpha_{m}<\lambda$. Consider the \sum map $\sum: \log \iota\left(\mathcal{O}_{K}-0\right) \rightarrow \mathbb{R}$ taking $\log \iota(\alpha)$ to $\log \left|N_{K / \mathbb{Q}}(\alpha)\right|$. If $B>0$ then $\sum \log \iota(\alpha) \leq B$ implies $\left|N_{K / \mathbb{Q}}(\alpha)\right| \leq \exp (B)$ and so $N_{K / \mathbb{Q}}(\alpha)$ takes finitely many integral values (between $-\exp (B)$ and $\exp (B)$). Using the observation with $B=\lambda$ it follows that if $\alpha_{m}=\log \iota\left(u_{m}\right)$ for $u_{m} \in \mathcal{O}_{K}-0$ then $\left|N_{K / \mathbb{Q}}\left(u_{m}\right)\right| \leq \exp (\lambda)$ for all m. By the pigeonhole principle there must exist different indices $m \neq m^{\prime}$ such that $\left|N_{K / \mathbb{Q}}\left(u_{m}\right)\right|=\left|N_{K / \mathbb{Q}}\left(u_{m^{\prime}}\right)\right|$ which implies that $u_{m}=u u_{m^{\prime}}$ for some $u \in \mathcal{O}_{K}^{\times}$. In other words $\alpha_{m}=\log \iota(u)+\alpha_{m^{\prime}}$ for $m \neq m^{\prime}$ for some unit $u \in \mathcal{O}_{K}^{\times}$and the condition on u follows from the fact that the coordinates of α_{m} are decreasing for $i \neq k$.

Proof of the Dirichlet Unit Theorem. It suffices to show that \mathcal{O}_{K}^{\times}has rank at least $r+s-1$. The previous lemma guarantees the existence of units u_{k} such that $\log \iota\left(u_{k}\right)$ have negative coordinates except in index k. Since $\sum \log \iota\left(u_{k}\right)=0$ it follows that the k-th coordinate of $\log \iota\left(u_{k}\right)$ must be >0.

Consider the matrix $\left(u_{i, j}\right)$ where $\log \iota\left(u_{i}\right)=\left(u_{i, 1}, \ldots, u_{i, r+s}\right)$. To show that $\operatorname{rank} \mathcal{O}_{K}^{\times}=r+s-1$ it suffices to show that $r+s-1$ of the $\log \iota\left(u_{k}\right)$ are linearly independent, i.e., the rank of this matrix is $\geq r+s-1$.

Suppose the rank is $<r+s-1$ in which case we may assume that there exist $t_{1}, t_{2}, \ldots, t_{r+s-s}$ such that
$\sum_{j=1}^{r+s-1} t_{j} u_{i, j}=0$ for all i. We may assume that the largest coefficient $t_{k}>0$. Then

$$
\begin{aligned}
0 & =\sum_{j=1}^{r+s-1} t_{j} u_{k, j} \\
& =t_{k} u_{k, k}+\sum_{j \neq k, 1 \leq j \leq r+s-1} t_{j} u_{k, j} \\
& \geq t_{k} u_{k, k}+\sum_{j \neq k, 1 \leq j \leq r+s-1} t_{k} u_{k, j} \\
& =t_{k} \sum_{j=1}^{r+s-1} u_{k, j} \\
& =-t_{k} u_{k, r+s}
\end{aligned}
$$

since $u_{k, j}<0$ when $j \neq k$ and $\sum_{j=1}^{r+s} u_{k, j}=0$ for all k. This of course is not possible since $t_{k}>0$ and $u_{k, r+s}<0$ as $k<r+s$.

