Introduction to Algebraic Number Theory Lecture 20

Andrei Jorza

9 Counting Ideals

(9.1) We would like to count ideals I of the ring of integers \mathcal{O}_{K} of a number field K such that $\|I\| \leq t$. We will denote $n_{K}(t)$ this number. Over \mathbb{Q}, this is easy: all ideals are of the form $n \mathbb{Z}$ and so the number $n_{\mathbb{Q}}(t)=\lfloor t\rfloor=t-$ small error.

Theorem 1. Let K be a number field and $C \in \mathrm{Cl}(K)$. Let $n_{C}(t)$ be the number of ideals of K in the class C of norm at most t. Then

$$
n_{C}(t)=\kappa t+O\left(t^{1-\frac{1}{n}}\right)
$$

where $n=[K: \mathbb{Q}]$ and

$$
\kappa=\frac{2^{r}(2 \pi)^{s} R_{K}}{w \sqrt{|\operatorname{disc}(K)|}}
$$

Here r is the number of real embeddings, $2 s$ is the number of torsion embeddings, w is the number of roots of unity in K and R_{K}, the regulator, is the volume of $\log \iota\left(\mathcal{O}_{K}^{\times}\right)$in $\Delta=\operatorname{ker}\left(\mathbb{R}^{r+s} \sum_{\mathbb{R}}\right)$.

Summing over $C \in \mathrm{Cl}(K)$ we get the estimate

$$
n_{K}(t)=h_{K} \kappa t+O\left(t^{1-1 / n}\right)
$$

Remark 1. The regulator can be computed as follows: let u_{1}, \ldots, u_{r+s-1} be a basis of (the free part of) \mathcal{O}_{K}^{\times} and let $\log \circ \iota\left(u_{i}\right)=\left(u_{i, 1}, \ldots, u_{i, r+s}\right)$. Then R_{K} is the absolute value of the determinant of any full rank minor of the matrix $\left(u_{i, j}\right)$.
Example 2. Take $K=\mathbb{Q}(\sqrt{3}, \sqrt{5})$ with four real embeddings $r=4, s=0$. The only roots of unity in K are ± 1 (they must be real!) so $w=2$. The discriminant is $\operatorname{disc}(K)=3600$ so $\sqrt{|\operatorname{disc}(K)|}=60$. Finally, we've seen that a basis for \mathcal{O}_{K}^{\times}is $\left.(1+\sqrt{5})\right) / 2,(1+\sqrt{5}) / 2-\sqrt{3}$ and $(1+\sqrt{5}) / 2-\sqrt{3}-1$. Thus

$$
R_{K}=\left|\begin{array}{ccc}
\log \left|\frac{1+\sqrt{5}}{2}\right| & \log \left|\frac{1+\sqrt{5}}{2}\right| & \log \left|\frac{1-\sqrt{5}}{2}\right| \\
\log \left|\frac{1+\sqrt{5}}{2}-\sqrt{3}\right| & \log \left|\frac{1+\sqrt{5}}{2}+\sqrt{3}\right| & \log \left|\frac{1-\sqrt{5}}{2}-\sqrt{3}\right| \\
\log \left|\frac{1+\sqrt{5}}{2}-\sqrt{3}-1\right| & \log \left|\frac{1+\sqrt{5}}{2}+\sqrt{3}-1\right| & \log \left|\frac{1-\sqrt{5}}{2}-\sqrt{3}-1\right|
\end{array}\right|
$$

where we take the first three real embeddings and leave out $\sqrt{3} \mapsto-\sqrt{3}, \sqrt{5} \mapsto-\sqrt{5}$.

Lemma 3. Fix $J \in C^{-1}$. There is a bijection between the sets $\{I \in C\|I\| \leq t\}$ and $\left\{(\alpha) \subset J \| N_{K / \mathbb{Q}}(\alpha) \leq\right.$ $t||J||\}$.
Proof. The maps are $I \mapsto I J$ which has to be principal (1 in $\mathrm{Cl}(K)$) and $(\alpha) \mapsto(\alpha) J^{-1}$ which lies in C. Indeed, $\|I J\|=\|I\|\|J\| \leq t| | J \|$ and $\left\|(\alpha) J^{-1}\right\|=\|(\alpha)\|\|J\|^{-1}=\mid N_{K / \mathbb{Q}}(\alpha)\| \| J \|^{-1} \leq t$.

Proof of Theorem. By the previous lemma we only need to count principal ideals $(\alpha) \subset J$ with $\|(\alpha)\| \leq t\|J\|$ and the difficulty consists in the fact that (α) determines the element α up to a unit.

Recall the map $K \rightarrow \mathbb{R}^{n}$ given by $\iota: x \mapsto\left(\sigma_{i}(x), \operatorname{Re} \tau_{i}(x), \operatorname{Im} \tau_{i}(x)\right)$ where σ_{i} are the real embeddings and $\tau_{i}, \bar{\tau}_{i}$ are the complex embeddings. Then $\iota(J) \subset \mathbb{R}^{n}$ is a lattice. Further recall the maps $\log : \mathbb{R}^{n}-0 \rightarrow \mathbb{R}^{r+s}$ given by $\left(x_{i}\right) \mapsto\left(\log \left(\left|x_{1}\right|\right), \ldots, \log \left(\left|x_{r}\right|\right), \log \left(x_{r+1}^{2}+x_{r+2}^{2}\right), \ldots\right)$ and $\sum: \mathbb{R}^{r+s} \rightarrow \mathbb{R}$ given by adding the coordinates. Then for every $x \in K^{\times}$one has $\sum \log \iota(x)=\log \left|N_{K / \mathbb{Q}}(x)\right|$. Remark that ker $\log =\{ \pm 1\}^{r}\left(S^{1}\right)^{s}$ and that the kernel of ι is the group of roots of unity in K.

Consider \mathcal{F} a fundamental parallelotope of $\log \iota\left(\mathcal{O}_{K}^{\times}\right) \subset \Delta \subset \mathbb{R}^{r+s}$, i.e., the span of a basis of $\log \iota\left(\mathcal{O}_{K}^{\times}\right)$ with coefficients in $[0,1)$. Also let $\mathcal{D} \subset \mathbb{R}^{r+s}$ the region spanned by \mathcal{F} and the vector $(1, \ldots, 1,2, \ldots, 2)$ (where 1 appears r times and 2 appears s times).

Note that $n_{C}(t)$ is the number of $\left\{(\alpha) \subset J\left\|N_{K / \mathbb{Q}}(\alpha) \mid \leq t\right\| J \|\right\} \cong\left\{\alpha \in J\left\|N_{K / \mathbb{Q}}(\alpha) \leq t\right\| J \|\right\} / \mathcal{O}_{K}^{\times}$and via ι this becomes

$$
n_{C}(t)=w^{-1}\left|\{\iota(\alpha) \in \iota(J)|N(\iota(\alpha)) \leq t| \mid J \|\} / \iota\left(\mathcal{O}_{K}^{\times}\right)\right|
$$

because $|\operatorname{ker} \iota|=w$.
Further composing with $\log : \mathbb{R}^{n} \rightarrow \mathbb{R}^{r+s}$ we see that $\mathbb{R}^{r+s} / \log \iota\left(\mathcal{O}_{K}^{\times}\right) \cong \mathcal{D}$ and, since ker $\log \iota$ consists of roots of unity it follows that

$$
\{\iota(\alpha) \in \iota(J) \mid N(\iota(\alpha)) \leq t\|J\|\} / \iota\left(\mathcal{O}_{K}^{\times}\right) \cong\{\iota(\alpha) \in \iota(J) \mid N(\iota(\alpha)) \leq t\|J\|, \log \iota(\alpha) \in \mathcal{D}\}
$$

Let $\mathcal{D}_{\lambda} \subset \mathcal{D}$ consist of tuples $\left(x_{1}, \ldots, x_{r+s}\right) \in \mathcal{D}$ with $\sum\left(x_{i}\right) \leq \lambda$. Then $N(\iota(\alpha)) \leq t\|J\|$ is equivalent to $\sum \log \iota(\alpha) \leq \log (t| | J \|)$ and so, putting everything together,

$$
n_{C}(t)=w^{-1}|\{\iota(\alpha) \in \iota(J)|N(\iota(\alpha)) \leq t||J| \mid, \log \iota(\alpha) \in \mathcal{D}\}|=w^{-1} \mid\left\{\iota(\alpha) \in \iota(J) \mid \log \iota(\alpha) \in \mathcal{D}_{\log (t\|J\|)}\right\}
$$

For simplicity let $\lambda:=\log (t\|J\|)$ and let $\mathcal{D}_{\lambda}^{\prime}=\log ^{-1}\left(\mathcal{D}_{\lambda}\right)$. Then

$$
n_{C}(t)=w^{-1}\left|\left\{\iota(\alpha) \in \iota(J) \cap \mathcal{D}_{\log (t| | J| |)}^{\prime}\right\}\right|=w^{-1}\left|\iota(J) \cap \mathcal{D}_{\log (t| | J| |)}^{\prime}\right|
$$

(To be continued)

