Introduction to Algebraic Number Theory

 Lecture 22Andrei Jorza

10ζ-functions and L-functions

(1.1) Let K be a number field.

Definition 1. The Dedekind ζ-function is

$$
\zeta_{K}(s)=\sum_{I \subset \mathcal{O}_{K}} \frac{1}{\|I\|^{s}}
$$

Proposition 2. $\zeta_{K}(s)$ converges and is holomorphic for $\operatorname{Re}(s)>1$.
Proof.

$$
\begin{aligned}
\zeta_{K}(s) & =\sum_{I} \frac{1}{\|I\|^{s}} \\
& =\sum_{t=1}^{\infty} \sum_{\|I\|=t} \frac{1}{t^{s}}
\end{aligned}
$$

Writing a_{n} for the number of ideals of norm n it follows that $n_{K}(t)=\sum_{n=1}^{t} a_{n}=O(t)$ and convergence follows from the lemma.
(1.2) "Analytic continuation"

Theorem 3 (Analytic Class Number Formula). Let K be a number field.

1. The Riemann ζ-function $\zeta(s)$ can be extended to a meromorphic function on $\operatorname{Re} s>0$ with a simple pole at $s=1$ and

$$
\lim _{s \rightarrow 1}(s-1) \zeta(s)=1
$$

2. The Dedekind ζ-function $\zeta_{K}(s)$ can be extended to a meromorphic function on $\operatorname{Re} s>1-1 /[K: \mathbb{Q}]$ with a simple pole at $s=1$ with

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r}(2 \pi)^{s} h_{K} R_{K}}{w \sqrt{|\operatorname{disc}(K)|}}
$$

Proof. Part one. The function $f(s)=\left(1-2^{1-s}\right) \zeta(s)$ can be written as

$$
f(s)=\sum_{n=1}^{\infty}(-1)^{n-1} n^{-s}
$$

for $\operatorname{Re} s>1$ but the latter is is holomorphic for $\operatorname{Re} s>0$ by the lemma as $\sum_{n=1}^{t}(-1)^{n-1}=O(1)$. This implies that $\zeta(s)$ is meromorphic with poles possibly when $2^{1-s}=1$, i.e., when $(1-s) \log (2)=2 \pi i k$ for some $k \in \mathbb{Z}$.

Similarly the function $g(s)=\left(1-3^{1-s}\right) \zeta(s)$ can be written as

$$
g(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

for $\operatorname{Re} s>1$ where $a_{n}=1$ unless $3 \mid n$ in which case $n=-2$. Again $g(s)$ makes sense as a holomorphic function when $\operatorname{Re} s>0$ and so $\zeta(s)$ is meromorphic with poles possibly when $3^{1-s}=1$, i.e., when $(1-$ s) $\log (3)=2 \pi i \ell$ for some $\ell \in \mathbb{Z}$.

Suppose $\zeta(s)$ has a pole at some s such that $(1-s) \log (2)=2 \pi i k$ and $(1-s) \log (3)=2 \pi i \ell$. Then $2^{\ell}=3^{k}$ and so $\ell=k=0$ and $s=1$. Thus $\zeta(s)$ is meromorphic with only possible pole at $s=1$. Let's compute the residue:

$$
\begin{aligned}
\lim _{s \rightarrow 1}(s-1) \zeta(s) & =\lim _{s \rightarrow 1} \frac{f(s)(s-1)}{1-2^{1-s}} \\
& =\frac{f(1)}{\log (2)} \\
& =1
\end{aligned}
$$

as

$$
f(1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log (1+1)=\log (2)
$$

Part two. Recall that for $\operatorname{Re} s>1$ one has

$$
\begin{aligned}
\zeta_{K}(s) & =\sum_{n=1}^{\infty} \frac{n_{K}(n)-n_{K}(n-1)}{n^{s}} \\
& =h_{K} \kappa \zeta(s)+\sum_{n=1}^{\infty} \frac{n_{K}(n)-n_{K}(n-1)-\kappa h_{K}}{n^{s}}
\end{aligned}
$$

Again by our lemma it follows that $\zeta_{K}(s)-h_{K} \kappa \zeta(s)$ is holomorphic for $\operatorname{Re}(s)>1-1 /[K: \mathbb{Q}]$ since

$$
\sum_{n=1}^{t}\left(n_{K}(n)-n_{K}(n-1)-\kappa h_{K}\right)=n_{K}(t)-\kappa h_{K} t=O\left(t^{1-1 /[K: \mathbb{Q}]}\right)
$$

This implies that $\zeta_{K}(s)-h_{K} \kappa \zeta(s)$ is holomorphic for $\operatorname{Re} s>1-1 /[K: \mathbb{Q}]$ and so the same must be true of $\zeta_{K}(s)$. For the residue computation note that

$$
\begin{aligned}
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s) & =\lim _{s \rightarrow 1}(s-1)\left(\zeta_{K}(s)-h_{K} \kappa \zeta(s)\right)+h_{K} \kappa \lim _{s \rightarrow 1}(s-1) \zeta(s) \\
& =h_{K} \kappa
\end{aligned}
$$

as in the first limit one has the product of two functions which are continuous at $s=1$.

(1.3) Functional equation.

Recall the Euler Γ function:

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

We will use two variants:

$$
\begin{aligned}
\Gamma_{\mathbb{R}}(s) & =\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \\
\Gamma_{\mathbb{C}}(s) & =2(2 \pi)^{-s} \Gamma(s)
\end{aligned}
$$

Lemma 4. 1. $\Gamma(x+1)=x \Gamma(x)$
2. $\Gamma(x) \Gamma\left(x+\frac{1}{2}\right)=2^{1-2 x} \sqrt{\pi} \Gamma(2 x)$ and $x=\frac{1}{2}$ gives $\Gamma(1 / 2)=\sqrt{\pi}$.
3. $\Gamma(n)=(n-1)$! for $n \geq 1$.

Proof. Not given.
Theorem 5. Let K be a number field with r_{1} real and $2 r_{2}$ complex places. Write $d_{K}=|\operatorname{disc}(K)|$ and

$$
\Lambda(s)=d_{K}^{s / 2} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)
$$

Then $\Lambda(s)=\Lambda(1-s)$.
Proof. Not given. Proof is better given in a different language.
Corollary 6 (A basic version of Birch and Swinnerton-Dyer). The function ζ_{K} has a zero of order $r_{1}+r_{2}-1$ at $s=0$ and

$$
\frac{\zeta_{K}^{\left(r_{1}+r_{2}-1\right)}(0)}{\left(r_{1}+r_{2}-1\right)!}=\frac{h_{K} R_{K}}{w}
$$

Here the order of vanishing $r_{1}+r_{2}-1$ is the rank of the finitely generated abelian group $\mathcal{O}_{K}^{\times}=\operatorname{Res}_{K / \mathbb{Q}} \mathbb{G}_{m}(\mathbb{Z})$. Proof. Next time.

