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10 ζ-functions and L-functions
(1.1) Let K be a number field.

Definition 1. The Dedekind ζ-function is

ζK(s) =
∑

I⊂OK

1

||I||s

Proposition 2. ζK(s) converges and is holomorphic for Re(s) > 1.

Proof.

ζK(s) =
∑
I

1

||I||s

=

∞∑
t=1

∑
||I||=t

1

ts

Writing an for the number of ideals of norm n it follows that nK(t) =
∑t

n=1 an = O(t) and convergence
follows from the lemma.

(1.2) “Analytic continuation”

Theorem 3 (Analytic Class Number Formula). Let K be a number field.

1. The Riemann ζ-function ζ(s) can be extended to a meromorphic function on Re s > 0 with a simple
pole at s = 1 and

lim
s→1

(s− 1)ζ(s) = 1

2. The Dedekind ζ-function ζK(s) can be extended to a meromorphic function on Re s > 1 − 1/[K : Q]
with a simple pole at s = 1 with

lim
s→1

(s− 1)ζK(s) =
2r(2π)shKRK

w
√
|disc(K)|

Proof. Part one. The function f(s) = (1− 21−s)ζ(s) can be written as

f(s) =

∞∑
n=1

(−1)n−1n−s

for Re s > 1 but the latter is is holomorphic for Re s > 0 by the lemma as
∑t

n=1(−1)n−1 = O(1). This
implies that ζ(s) is meromorphic with poles possibly when 21−s = 1, i.e., when (1 − s) log(2) = 2πik for
some k ∈ Z.
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Similarly the function g(s) = (1− 31−s)ζ(s) can be written as

g(s) =

∞∑
n=1

ann
−s

for Re s > 1 where an = 1 unless 3 | n in which case n = −2. Again g(s) makes sense as a holomorphic
function when Re s > 0 and so ζ(s) is meromorphic with poles possibly when 31−s = 1, i.e., when (1 −
s) log(3) = 2πi` for some ` ∈ Z.

Suppose ζ(s) has a pole at some s such that (1−s) log(2) = 2πik and (1−s) log(3) = 2πi`. Then 2` = 3k

and so ` = k = 0 and s = 1. Thus ζ(s) is meromorphic with only possible pole at s = 1. Let’s compute the
residue:

lim
s→1

(s− 1)ζ(s) = lim
s→1

f(s)(s− 1)

1− 21−s

=
f(1)

log(2)

= 1

as

f(1) = 1− 1

2
+

1

3
− 1

4
+ · · · = log(1 + 1) = log(2)

Part two. Recall that for Re s > 1 one has

ζK(s) =

∞∑
n=1

nK(n)− nK(n− 1)

ns

= hKκζ(s) +

∞∑
n=1

nK(n)− nK(n− 1)− κhK
ns

Again by our lemma it follows that ζK(s)− hKκζ(s) is holomorphic for Re(s) > 1− 1/[K : Q] since

t∑
n=1

(nK(n)− nK(n− 1)− κhK) = nK(t)− κhKt = O(t1−1/[K:Q])

This implies that ζK(s)−hKκζ(s) is holomorphic for Re s > 1− 1/[K : Q] and so the same must be true
of ζK(s). For the residue computation note that

lim
s→1

(s− 1)ζK(s) = lim
s→1

(s− 1)(ζK(s)− hKκζ(s)) + hKκ lim
s→1

(s− 1)ζ(s)

= hKκ

as in the first limit one has the product of two functions which are continuous at s = 1.

(1.3) Functional equation.
Recall the Euler Γ function:

Γ(s) =

∫ ∞
0

xs−1e−xdx

We will use two variants:

ΓR(s) = π−s/2Γ
(s

2

)
ΓC(s) = 2(2π)−sΓ(s)
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Lemma 4. 1. Γ(x+ 1) = xΓ(x)

2. Γ(x)Γ

(
x+

1

2

)
= 21−2x

√
πΓ(2x) and x = 1

2 gives Γ(1/2) =
√
π.

3. Γ(n) = (n− 1)! for n ≥ 1.

Proof. Not given.

Theorem 5. Let K be a number field with r1 real and 2r2 complex places. Write dK = |disc(K)| and

Λ(s) = d
s/2
K ΓR (s)

r1 ΓC(s)r2ζK(s)

Then Λ(s) = Λ(1− s).

Proof. Not given. Proof is better given in a different language.

Corollary 6 (A basic version of Birch and Swinnerton-Dyer). The function ζK has a zero of order r1+r2−1
at s = 0 and

ζ
(r1+r2−1)
K (0)

(r1 + r2 − 1)!
=
hKRK

w

Here the order of vanishing r1+r2−1 is the rank of the finitely generated abelian group O×K = ResK/Q Gm(Z).

Proof. Next time.
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