Introduction to Algebraic Number Theory Lecture 22

Andrei Jorza

10 ζ -functions and *L*-functions

(1.1) Let K be a number field.

Definition 1. The Dedekind ζ -function is

$$\zeta_K(s) = \sum_{I \subset \mathcal{O}_K} \frac{1}{||I||^s}$$

Proposition 2. $\zeta_K(s)$ converges and is holomorphic for $\operatorname{Re}(s) > 1$.

Proof.

$$\zeta_K(s) = \sum_I \frac{1}{||I||^s}$$
$$= \sum_{t=1}^\infty \sum_{||I||=t} \frac{1}{t^s}$$

Writing a_n for the number of ideals of norm n it follows that $n_K(t) = \sum_{n=1}^t a_n = O(t)$ and convergence follows from the lemma.

(1.2) "Analytic continuation"

Theorem 3 (Analytic Class Number Formula). Let K be a number field.

1. The Riemann ζ -function $\zeta(s)$ can be extended to a meromorphic function on $\operatorname{Re} s > 0$ with a simple pole at s = 1 and

$$\lim_{s \to 1} (s-1)\zeta(s) = 1$$

2. The Dedekind ζ -function $\zeta_K(s)$ can be extended to a meromorphic function on $\operatorname{Re} s > 1 - 1/[K : \mathbb{Q}]$ with a simple pole at s = 1 with

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^r (2\pi)^s h_K R_K}{w\sqrt{|\operatorname{disc}(K)|}}$$

Proof. Part one. The function $f(s) = (1 - 2^{1-s})\zeta(s)$ can be written as

$$f(s) = \sum_{n=1}^{\infty} (-1)^{n-1} n^{-s}$$

for $\operatorname{Re} s > 1$ but the latter is is holomorphic for $\operatorname{Re} s > 0$ by the lemma as $\sum_{n=1}^{t} (-1)^{n-1} = O(1)$. This implies that $\zeta(s)$ is meromorphic with poles possibly when $2^{1-s} = 1$, i.e., when $(1-s)\log(2) = 2\pi i k$ for some $k \in \mathbb{Z}$.

Similarly the function $g(s) = (1 - 3^{1-s})\zeta(s)$ can be written as

$$g(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

for $\operatorname{Re} s > 1$ where $a_n = 1$ unless $3 \mid n$ in which case n = -2. Again g(s) makes sense as a holomorphic function when $\operatorname{Re} s > 0$ and so $\zeta(s)$ is meromorphic with poles possibly when $3^{1-s} = 1$, i.e., when $(1 - s)\log(3) = 2\pi i \ell$ for some $\ell \in \mathbb{Z}$.

Suppose $\zeta(s)$ has a pole at some s such that $(1-s)\log(2) = 2\pi ik$ and $(1-s)\log(3) = 2\pi i\ell$. Then $2^{\ell} = 3^k$ and so $\ell = k = 0$ and s = 1. Thus $\zeta(s)$ is meromorphic with only possible pole at s = 1. Let's compute the residue:

$$\lim_{s \to 1} (s-1)\zeta(s) = \lim_{s \to 1} \frac{f(s)(s-1)}{1-2^{1-s}}$$
$$= \frac{f(1)}{\log(2)}$$
$$= 1$$

 \mathbf{as}

$$f(1) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log(1+1) = \log(2)$$

Part two. Recall that for $\operatorname{Re} s > 1$ one has

$$\zeta_K(s) = \sum_{n=1}^{\infty} \frac{n_K(n) - n_K(n-1)}{n^s}$$

= $h_K \kappa \zeta(s) + \sum_{n=1}^{\infty} \frac{n_K(n) - n_K(n-1) - \kappa h_K}{n^s}$

Again by our lemma it follows that $\zeta_K(s) - h_K \kappa \zeta(s)$ is holomorphic for $\operatorname{Re}(s) > 1 - 1/[K : \mathbb{Q}]$ since

$$\sum_{n=1}^{t} (n_K(n) - n_K(n-1) - \kappa h_K) = n_K(t) - \kappa h_K t = O(t^{1-1/[K:\mathbb{Q}]})$$

This implies that $\zeta_K(s) - h_K \kappa \zeta(s)$ is holomorphic for $\operatorname{Re} s > 1 - 1/[K : \mathbb{Q}]$ and so the same must be true of $\zeta_K(s)$. For the residue computation note that

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \lim_{s \to 1} (s-1)(\zeta_K(s) - h_K \kappa \zeta(s)) + h_K \kappa \lim_{s \to 1} (s-1)\zeta(s)$$
$$= h_K \kappa$$

as in the first limit one has the product of two functions which are continuous at s = 1.

(1.3) Functional equation.

Recall the Euler Γ function:

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$$

We will use two variants:

$$\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right)$$
$$\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$$

Lemma 4. 1. $\Gamma(x+1) = x\Gamma(x)$ 2. $\Gamma(x)\Gamma\left(x+\frac{1}{2}\right) = 2^{1-2x}\sqrt{\pi}\Gamma(2x)$ and $x = \frac{1}{2}$ gives $\Gamma(1/2) = \sqrt{\pi}$. 3. $\Gamma(n) = (n-1)!$ for $n \ge 1$.

Proof. Not given.

Theorem 5. Let K be a number field with r_1 real and $2r_2$ complex places. Write $d_K = |\operatorname{disc}(K)|$ and

$$\Lambda(s) = d_K^{s/2} \Gamma_{\mathbb{R}} \left(s \right)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$$

Then $\Lambda(s) = \Lambda(1-s)$.

Proof. Not given. Proof is better given in a different language.

Corollary 6 (A basic version of Birch and Swinnerton-Dyer). The function ζ_K has a zero of order $r_1 + r_2 - 1$ at s = 0 and $(r_1 + r_2 - 1) \in \mathbb{R}$

$$\frac{\zeta_K^{(r_1+r_2-1)}(0)}{(r_1+r_2-1)!} = \frac{h_K R_K}{w}$$

Here the order of vanishing $r_1 + r_2 - 1$ is the rank of the finitely generated abelian group $\mathcal{O}_K^{\times} = \operatorname{Res}_{K/\mathbb{Q}} \mathbb{G}_m(\mathbb{Z})$. *Proof.* Next time.