Introduction to Algebraic Number Theory

 Lecture 23Andrei Jorza

10ζ-functions and L-functions

(10.3) Functional equation (continued).

Corollary 1 (A basic version of Birch and Swinnerton-Dyer). The function ζ_{K} has a zero of order $r_{1}+r_{2}-1$ at $s=0$ and

$$
\frac{\zeta_{K}^{\left(r_{1}+r_{2}-1\right)}(0)}{\left(r_{1}+r_{2}-1\right)!}=\frac{h_{K} R_{K}}{w}
$$

Here the order of vanishing $r_{1}+r_{2}-1$ is the rank of the finitely generated abelian group $\mathcal{O}_{K}^{\times}=\operatorname{Res}_{K / \mathbb{Q}} \mathbb{G}_{m}(\mathbb{Z})$.
Proof. Using the previous lemma on the Γ-function we get $\Gamma_{\mathbb{R}}(s)=\frac{2 \pi}{s} \Gamma_{\mathbb{R}}(s+2)$ and $\Gamma_{\mathbb{C}}(s)=\frac{2 \pi}{s} \Gamma_{\mathbb{C}}(s+1)$ have simple poles at $s=0$. These formulae transform the functional equation into

$$
d_{K}^{s / 2} \frac{(2 \pi)^{r_{1}}}{s^{r_{1}}} \Gamma_{\mathbb{R}}(s+2)^{r_{1}} \frac{(2 \pi)^{r_{2}}}{s^{r_{2}}} \Gamma_{\mathbb{C}}(s+1)^{r_{2}} \zeta_{K}(s)=d_{K}^{(1-s) / 2} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)
$$

Recall that ζ_{K} has a simple pole at $s=1$ and so $\zeta_{K}(1-s)=\frac{f(s)}{s}$ where $f(0)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w \sqrt{|\operatorname{disc}(K)|}}$. Therefore

$$
\zeta_{K}(s)=\frac{s^{r_{1}+r_{2}-1} f(s) d_{K}^{(1-2 s) / 2} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}}}{2^{r_{1}+r_{2}} \pi^{r_{1}+r_{2}} \Gamma_{\mathbb{R}}(s+2)^{r_{1}} \Gamma_{\mathbb{C}}(s+1)^{r_{2}}}
$$

In this expression the only factor vanishing at $s=0$ is $s^{r_{1}+r_{2}-1}$ and so the order of vanishing is as desired. Taking derivatives at 0 we get

$$
\begin{aligned}
\frac{\zeta_{K}^{\left(r_{1}+r_{2}-1\right)}(0)}{\left(r_{1}+r_{2}-1\right)!} & =\frac{f(0) \sqrt{d_{K}} \Gamma_{\mathbb{R}}(1)^{r_{1}} \Gamma_{\mathbb{C}}(1)^{r_{2}}}{2^{r_{1}+r_{2}} \pi^{r_{1}+r_{2}} \Gamma_{\mathbb{R}}(2)^{r_{1}} \Gamma_{\mathbb{C}}(1)^{r_{2}}} \\
& =\frac{f(0) \sqrt{d_{K}} \pi^{-r_{2}}}{2^{r_{1}+r_{2}} \pi^{r_{1}+r_{2}} \pi^{-r_{1}} \pi^{-r_{2}}} \\
& =\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{2^{r_{1}+r_{2}} \pi^{r_{2}} w} \\
& =\frac{h_{K} R_{K}}{w}
\end{aligned}
$$

using $\Gamma_{\mathbb{R}}(1)=\pi^{-1 / 2} \Gamma(1 / 2)=1, \Gamma_{\mathbb{C}}(1)=2(2 \pi)^{-1}=\pi^{-1}$ and $\Gamma_{\mathbb{R}}(2)=\pi^{-1}$.
(10.4) Characters.

Definition 2. Let G be a finite abelian group. A character of G is a group homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$.
Proposition 3. The set \widehat{G} of all characters of G is a finite abelian group.

1. If G and H are finite abelian groups then $\widehat{G \times H} \cong \widehat{G} \times \widehat{H}$.
2. There is a non-canonical isomorphism $G \approx \widehat{G}$.
3. There is a canonical isomorphism $\widehat{\widehat{G}} \cong G$ given by $g \mapsto(\chi \mapsto \chi(g))$.

Proof. Part one: If $\chi \in \widehat{G \times H}$ let $\chi_{1}(g)=\chi(g, 1)$ and $\chi_{2}(h)=\chi(1, h)$. Then $\chi(g, h)=\chi_{1}(g) \chi_{2}(h)$ and we get a map $\widehat{G \times H} \rightarrow \widehat{G} \times \widehat{H}$ given by $\chi \mapsto \chi_{1} \times \chi_{2}$. This is clearly an isomorphism.

Part two: If $G=\mathbb{Z} / n \mathbb{Z}$ then every $\chi \in \widehat{G}$ is uniquely defined by $\chi(1) \in \mu_{n}$ and so $\widehat{\mathbb{Z} / n \mathbb{Z}} \cong \mu_{n}$. But $\mu_{n} \approx \mathbb{Z} / n \mathbb{Z}$ identifying ζ_{n}^{k} with k for a choice of primitive n-th root ζ_{n}. The result now follows from this and part one.

Part three: The given map is a canonical homomorphism. Suppose it is not injective. Then there exists $g \in G$ such that $\chi(g)=1$ for every $\chi \in \widehat{G}$. But there is a nontrivial character of $\langle g\rangle$ sending g to a primitive root of 1 of order equal to the order of g. This defines a character $G \rightarrow\langle g\rangle \rightarrow \mathbb{C}^{\times}$which is not trivial on g. Finally, we have an injective homomorphism between finite sets of the same size (from part two) and so it is an isomorphism.
(10.5) L-functions.

Definition 4. A character $\bmod N$ is a character of the group $(\mathbb{Z} / N \mathbb{Z})^{\times}$, i.e., a homomorphism χ : $(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$. The L-function of χ is the Dirichlet series

$$
L(\chi, s)=\sum_{(n, N)=1} \frac{\chi(n)}{n^{s}}
$$

which converges to a holomorphic function on $\operatorname{Re} s>1$.
Proposition 5. If χ is a character mod N which is not the trivial character then

1. $\sum_{k \in(\mathbb{Z} / N \mathbb{Z})} \times \chi(k)=0$
2. $L(\chi, s)$ is analytic when $\operatorname{Re} s>0$.

Proof. If G is any finite abelian group and $\chi: G \rightarrow \mathbb{C}^{\times}$is any nontrivial homomorphism then $\sum_{g \in G} \chi(g)=0$. Indeed, $\chi \neq 1$ implies that $\chi(h) \neq 1$ for some $h \in G$. Then

$$
\begin{aligned}
\sum_{g \in G} \chi(g) & =\sum_{g h \in G} \chi(g h) \\
& =\chi(h) \sum_{g \in G} \chi(g)
\end{aligned}
$$

and so the sum must vanish.
Look at the partial sums $A_{t}=\sum_{n=1}^{t} \chi(t)$. The sum over representatives of $\mathbb{Z} / N \mathbb{Z}$ is 0 and so $\left|A_{t}\right| \leq$ $\sum|\chi(k)|=\varphi(N)$ is bounded. Thus $L(\chi, s)$ is holomorphic for $\operatorname{Re} s>0$.

