Introduction to Algebraic Number Theory Lecture 23

Andrei Jorza

10 ζ -functions and *L*-functions

(10.3) Functional equation (continued).

Corollary 1 (A basic version of Birch and Swinnerton-Dyer). The function ζ_K has a zero of order $r_1 + r_2 - 1$ at s = 0 and

$$\frac{\zeta_K^{(r_1+r_2-1)}(0)}{(r_1+r_2-1)!} = \frac{h_K R_K}{w}$$

Here the order of vanishing $r_1 + r_2 - 1$ is the rank of the finitely generated abelian group $\mathcal{O}_K^{\times} = \operatorname{Res}_{K/\mathbb{Q}} \mathbb{G}_m(\mathbb{Z})$.

Proof. Using the previous lemma on the Γ -function we get $\Gamma_{\mathbb{R}}(s) = \frac{2\pi}{s}\Gamma_{\mathbb{R}}(s+2)$ and $\Gamma_{\mathbb{C}}(s) = \frac{2\pi}{s}\Gamma_{\mathbb{C}}(s+1)$ have simple poles at s = 0. These formulae transform the functional equation into

$$d_{K}^{s/2} \frac{(2\pi)^{r_{1}}}{s^{r_{1}}} \Gamma_{\mathbb{R}} \left(s+2\right)^{r_{1}} \frac{(2\pi)^{r_{2}}}{s^{r_{2}}} \Gamma_{\mathbb{C}}(s+1)^{r_{2}} \zeta_{K}(s) = d_{K}^{(1-s)/2} \Gamma_{\mathbb{R}} \left(1-s\right)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)$$

Recall that ζ_K has a simple pole at s = 1 and so $\zeta_K(1-s) = \frac{f(s)}{s}$ where $f(0) = \frac{2^{r_1}(2\pi)^{r_2}h_K R_K}{w\sqrt{|\operatorname{disc}(K)|}}$. Therefore

$$\zeta_K(s) = \frac{s^{r_1 + r_2 - 1} f(s) d_K^{(1-2s)/2} \Gamma_{\mathbb{R}} (1-s)^{r_1} \Gamma_{\mathbb{C}} (1-s)^{r_2}}{2^{r_1 + r_2} \pi^{r_1 + r_2} \Gamma_{\mathbb{R}} (s+2)^{r_1} \Gamma_{\mathbb{C}} (s+1)^{r_2}}$$

In this expression the only factor vanishing at s = 0 is $s^{r_1+r_2-1}$ and so the order of vanishing is as desired. Taking derivatives at 0 we get

$$\frac{\zeta_K^{(r_1+r_2-1)}(0)}{(r_1+r_2-1)!} = \frac{f(0)\sqrt{d_K}\Gamma_{\mathbb{R}}(1)^{r_1}\Gamma_{\mathbb{C}}(1)^{r_2}}{2^{r_1+r_2}\pi^{r_1+r_2}\Gamma_{\mathbb{R}}(2)^{r_1}\Gamma_{\mathbb{C}}(1)^{r_2}}$$
$$= \frac{f(0)\sqrt{d_K}\pi^{-r_2}}{2^{r_1+r_2}\pi^{r_1+r_2}\pi^{-r_1}\pi^{-r_2}}$$
$$= \frac{2^{r_1}(2\pi)^{r_2}h_K R_K}{2^{r_1+r_2}\pi^{r_2}w}$$
$$= \frac{h_K R_K}{w}$$

using $\Gamma_{\mathbb{R}}(1) = \pi^{-1/2} \Gamma(1/2) = 1$, $\Gamma_{\mathbb{C}}(1) = 2(2\pi)^{-1} = \pi^{-1}$ and $\Gamma_{\mathbb{R}}(2) = \pi^{-1}$.

(10.4) Characters.

Definition 2. Let G be a finite abelian group. A character of G is a group homomorphism $\chi : G \to \mathbb{C}^{\times}$. **Proposition 3.** The set \widehat{G} of all characters of G is a finite abelian group.

- 1. If G and H are finite abelian groups then $\widehat{G \times H} \cong \widehat{G} \times \widehat{H}$.
- 2. There is a non-canonical isomorphism $G \approx \widehat{G}$.
- 3. There is a canonical isomorphism $\widehat{\widehat{G}} \cong G$ given by $g \mapsto (\chi \mapsto \chi(g))$.

Proof. Part one: If $\chi \in \widehat{G \times H}$ let $\chi_1(g) = \chi(g, 1)$ and $\chi_2(h) = \chi(1, h)$. Then $\chi(g, h) = \chi_1(g)\chi_2(h)$ and we get a map $\widehat{G \times H} \to \widehat{G} \times \widehat{H}$ given by $\chi \mapsto \chi_1 \times \chi_2$. This is clearly an isomorphism.

Part two: If $G = \mathbb{Z}/n\mathbb{Z}$ then every $\chi \in \widehat{G}$ is uniquely defined by $\chi(1) \in \mu_n$ and so $\overline{\mathbb{Z}}/n\mathbb{Z} \cong \mu_n$. But $\mu_n \approx \mathbb{Z}/n\mathbb{Z}$ identifying ζ_n^k with k for a choice of primitive n-th root ζ_n . The result now follows from this and part one.

Part three: The given map is a canonical homomorphism. Suppose it is not injective. Then there exists $g \in G$ such that $\chi(g) = 1$ for every $\chi \in \widehat{G}$. But there is a nontrivial character of $\langle g \rangle$ sending g to a primitive root of 1 of order equal to the order of g. This defines a character $G \rightarrow \langle g \rangle \rightarrow \mathbb{C}^{\times}$ which is not trivial on g. Finally, we have an injective homomorphism between finite sets of the same size (from part two) and so it is an isomorphism.

(10.5) L-functions.

Definition 4. A character mod N is a character of the group $(\mathbb{Z}/N\mathbb{Z})^{\times}$, i.e., a homomorphism $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. The L-function of χ is the Dirichlet series

$$L(\chi, s) = \sum_{(n,N)=1} \frac{\chi(n)}{n^s}$$

which converges to a holomorphic function on $\operatorname{Re} s > 1$.

Proposition 5. If χ is a character mod N which is not the trivial character then

- 1. $\sum_{k \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \chi(k) = 0$
- 2. $L(\chi, s)$ is analytic when $\operatorname{Re} s > 0$.

Proof. If G is any finite abelian group and $\chi: G \to \mathbb{C}^{\times}$ is any nontrivial homomorphism then $\sum_{g \in G} \chi(g) = 0$. Indeed, $\chi \neq 1$ implies that $\chi(h) \neq 1$ for some $h \in G$. Then

$$\sum_{g \in G} \chi(g) = \sum_{gh \in G} \chi(gh)$$
$$= \chi(h) \sum_{g \in G} \chi(g)$$

and so the sum must vanish.

Look at the partial sums $A_t = \sum_{n=1}^t \chi(t)$. The sum over representatives of $\mathbb{Z}/N\mathbb{Z}$ is 0 and so $|A_t| \leq \sum |\chi(k)| = \varphi(N)$ is bounded. Thus $L(\chi, s)$ is holomorphic for $\operatorname{Re} s > 0$.