Introduction to Algebraic Number Theory

 Lecture 24Andrei Jorza

10ζ-functions and L-functions

(10.6) Euler products.

Proposition 1. Have

$$
\begin{aligned}
\zeta(s) & =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \\
\zeta_{K}(s) & =\prod_{\mathfrak{p}}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
L(\chi, s) & =\prod_{p \nmid N}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
\end{aligned}
$$

where p is a prime and \mathfrak{p} is a prime ideal.
Proof. Follows from unique factorization in Dedekind domains and the fact that χ is a homomorphism.
Proposition 2. Suppose G is a finite abelian group and $N>1$ an integer.

1. If $\chi \in \widehat{G}$ then

$$
\prod_{g \in G}(X-\chi(g))=\left(X^{a}-1\right)^{b}
$$

where $a=|\operatorname{Im} \chi|$ is the order of χ in \widehat{G} and $b=|\operatorname{ker} \chi|=|G| / a$.
2. If $p \in(\mathbb{Z} / N \mathbb{Z})^{\times}$has order exactly r then

$$
\prod_{\chi \in(\mathbb{Z} / N \mathbb{Z})^{\times}}(X-\chi(p))=\left(X^{r}-1\right)^{\varphi(N) / r}
$$

Proof. Part one: Since χ is a homomorphism, $\operatorname{Im} \chi \subset \mathbb{C}^{\times}$is a subgroup and thus isomorphic to μ_{a} for $a=|\operatorname{Im} \chi|$. Now

$$
\begin{aligned}
\prod_{g \in G}(X-\chi(g)) & =\prod_{g \in \operatorname{ker} \chi} \prod_{h \in G / \operatorname{ker} \chi}(X-\chi(g h)) \\
& =\prod_{h \in G / \operatorname{ker} \chi}(X-\chi(h))^{b} \\
& =\prod_{\zeta \in \operatorname{Im} \chi \cong \mu_{a}}(X-\zeta)^{b} \\
& =\left(X^{a}-1\right)^{b}
\end{aligned}
$$

Finally, the statements about a being the order of χ in \widehat{G} and $a b=|G|$ are immediate from the fact that $\operatorname{Im} \chi=\mu_{a}$ and the first isomorphism theorem.

Part two: Let $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $\psi_{p} \in \widehat{\widehat{G}}$ given by $\psi_{p}(\chi)=\psi(p)$ for any $\psi \in \widehat{G}$. Then $\prod_{\chi \in \widehat{G}}(X-\chi(p))=$ $\prod_{\chi \in \widehat{G}}\left(X-\psi_{p}(\chi)\right)$. We will apply part one to the group \widehat{G} and the element ψ_{p} and deduce that this product is $\left(X^{a}-1\right)^{b}$ where $a=\left|\operatorname{Im} \psi_{p}\right|$ is the order of ψ_{p} and $b=\left|\operatorname{ker} \psi_{p}\right|=\varphi(N) / a$. But the order of ψ_{p} in $\hat{\widehat{G}}$ is the same as the order r of p in G.

Theorem 3. Suppose $K=\mathbb{Q}\left(\zeta_{N}\right)$ for $N>1$. Then

$$
\zeta_{K}(s)=\prod_{\mathfrak{p} \mid N}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \prod_{\chi \in(\mathbb{Z} / N \mathbb{Z})^{\times}} L(\chi, s)
$$

where

$$
\zeta(s)=\prod_{p \nmid N}\left(1-\frac{1}{p^{s}}\right)^{-1} L(1, s)
$$

for the trivial $\bmod N$ character.
Proof. We only need to show that

$$
\prod_{\mathfrak{p} \nmid N}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1}=\prod_{\chi \in(\mathbb{Z} / N \mathbb{Z})^{\times}} L(\chi, s)
$$

which is equivalent to

$$
\prod_{\mathfrak{p} \nmid N}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1}=\prod_{\chi \in(\underline{\mathbb{Z} / N \mathbb{Z}})} \prod_{p \nmid N}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

For this it suffices to show that

$$
\prod_{\chi \in(\mathbb{Z} / N \mathbb{Z})^{\times}}\left(1-\frac{\chi(p)}{p^{s}}\right)=\prod_{\mathfrak{p} \mid p}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)
$$

Let e and f be the ramification and inertia indices of \mathfrak{p} (independent of $\mathfrak{p} \mid p$ since K / \mathbb{Q} is Galois). Then the RHS is $\left(1-\frac{1}{p^{f s}}\right)^{e}$ and so it suffices to show that

$$
\prod_{\chi \in(\mathbb{Z} / N \mathbb{Z})^{\times}}\left(p^{s}-\chi(p)\right)=\left(p^{f s}-1\right)^{e}
$$

By a previous proposition the LHS is $\left(p^{a s}-1\right)^{b}$ where a is the order of p in $(\mathbb{Z} / N \mathbb{Z})^{\times}$and $b=\varphi(N) / a$. Thus is suffices to show that $a=f$.

But f is the degree of any irreducible factor of the cyclotomic polynomial Φ_{N} in $\mathbb{F}_{p}[X]$ (since $\mathcal{O}_{\mathbb{Q}\left(\zeta_{N}\right)}=$ $\mathbb{Z}\left[\zeta_{N}\right]$ so there is no restriction on p). Such an irreducible factor has as roots primitive N-th roots of 1 which would then be defined over $\mathbb{F}_{p^{f}}$ (and no smaller subfield) and the result follows as on the homework from the fact that $\mathbb{F}_{p^{f}}^{\times} \cong \mathbb{Z} /\left(p^{f}-1\right) \mathbb{Z}$ and so $N \mid p^{f}-1$ (but not so for smaller exponents) which is equivalent to f being the order a of p.

Corollary 4. If χ is a nontrivial character $\bmod N$ then $L(\chi, 1) \neq 1$.

Proof. From the previous theorem we get

$$
(s-1) \zeta_{K}(s)=(s-1) \zeta(s) \prod_{p \nmid N}\left(1-\frac{1}{p^{s}}\right) \prod_{\mathfrak{p} \mid N}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \prod_{\chi \neq 1} L(\chi, s)
$$

Taking $\lim _{s \rightarrow 1}$ we get that $\prod_{\chi \neq 1} L(\chi, 1)$ is nonzero.
(10.7) Density.

Lemma 5. Let K / \mathbb{Q} be a number field. As $s \rightarrow 1^{+}$we have the estimate

$$
\sum_{\mathfrak{p}} \frac{1}{\|\mathfrak{p}\|^{s}}=\log \zeta_{K}(s)+O(1)=-\log (s-1)+O(1)
$$

Proof. We have

$$
\begin{aligned}
\log \zeta_{K}(s) & =\log \prod_{\mathfrak{p}}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
& =-\sum_{\mathfrak{p}} \log \left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right) \\
& =\sum_{\mathfrak{p}} \sum_{n \geq 1} \frac{1}{n\|\mathfrak{p}\|^{n s}} \\
& =\sum_{\mathfrak{p}} \frac{1}{\|\mathfrak{p}\|^{s}}+\sum_{\mathfrak{p}} \sum_{n \geq 2} \frac{1}{n\|\mathfrak{p}\|^{n s}}
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|\log \zeta_{K}(s)-\sum_{\mathfrak{p}} \frac{1}{\|\mathfrak{p}\|^{s}}\right| & \leq \sum_{\mathfrak{p}} \sum_{n \geq 2} \frac{1}{n\|\mathfrak{p}\|^{n s}} \\
& <\sum_{\mathfrak{p}} \frac{1}{\|\mathfrak{p}\|^{s}\left(\|\mathfrak{p}\|^{s}-1\right)} \\
& <\sum_{\mathfrak{p}} \frac{2}{\|\mathfrak{p}\|^{2 s}} \\
& <2 \zeta_{K}(2 s)
\end{aligned}
$$

since $\|\mathfrak{p}\|^{s}>2$ and so $\|\mathfrak{p}\|^{s}-1>\|\mathfrak{p}\|^{s} / 2$.
The first estimate then follows from the fact that $\zeta_{K}(s)$ is holomorphic around $s=2$. The second estimate follows from the fact that $\zeta_{K}(s)$ has a simple pole at $s=1$.

