Introduction to Algebraic Number Theory

Andrei Jorza

11 Special values of the ζ-function and of L-functions

(11.5) Gauss sums.

Definition 1. Suppose χ is a character. The Gauss sum

$$
\tau(\chi)=\sum_{a=1}^{f_{\chi}} \chi(a) e^{2 \pi i a / f_{\chi}}
$$

For example if $\chi_{3}=\left(\frac{\dot{3}}{3}\right)$ then $\tau\left(\chi_{3}\right)=\zeta_{3}-\zeta_{3}^{2}=i \sqrt{3}$.
Lemma 2. Suppose $b \in \mathbb{Z}$ and χ is a character of conductor f. Then

$$
\sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a b / f}=\chi(b) \tau(\bar{\chi})
$$

and so $\overline{\tau(\chi)}=\chi(-1) \tau(\bar{\chi})$.
Proof. If $(b, f)=1$ then $\{a b \mid a \in \mathbb{Z} / f \mathbb{Z}\}=\mathbb{Z} / f \mathbb{Z}$ and so

$$
\begin{aligned}
\chi(b) \tau(\bar{\chi}) & =\chi(b) \sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a / f} \\
& =\chi(b) \sum_{a=1}^{f} \bar{\chi}(a b) e^{2 \pi i a b / f} \\
& =\chi(b) \bar{\chi}(b) \sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a b / f} \\
& =\sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a b / f}
\end{aligned}
$$

since $\chi(b) \bar{\chi}(b)=|\chi(b)|=1$ because $\operatorname{Im} \chi$ consists of roots of unity.
If $(b, f)=d>1$ then the RHS vanishes as $\chi(b)=0$. Write $b=c d$ and $f=g d$. The character $\bar{\chi}$ has conductor f and so it does not come from a character modulo g. In other words $\bar{\chi}$ is not trivial on fibers of the quotient $(\mathbb{Z} / f \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / g \mathbb{Z})^{\times}$. For the fiber over 1 this means that for some $u \equiv 1(\bmod g)$ (in the fiber over 1) and coprime to f the character $\bar{\chi}(u) \neq 1$. But then multiplying by u coprime to f permutes terms so

$$
\begin{aligned}
\sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a b / f} & =\sum_{a=1}^{f} \bar{\chi}(a u) e^{2 \pi i a b u / f} \\
& =\bar{\chi}(u) \sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a b / f}
\end{aligned}
$$

and so the LHS is also 0 as $\bar{\chi}(u) \neq 1$.
For the last statement, apply with $b=-1$ and note that $e^{-2 \pi i a / f}$ is the conjugate of $e^{2 \pi i a / f}$.
Lemma 3. $|\tau(\chi)|=\sqrt{f_{\chi}}$.
Proof. Since $|\chi(b)|=1$ if $(b, f)=1$ and 0 otherwise we get (using the previous lemma)

$$
\begin{aligned}
\varphi(f)|\tau(\chi)|^{2} & =\sum_{b=1}^{f}|\chi(b) \tau(\chi)|^{2} \\
& =\sum_{b=1}^{f} \overline{\chi(b) \overline{\tau(\chi)}} \chi(b) \overline{\tau(\chi)} \\
& =\sum_{b=1}^{f} \overline{\chi(b) \tau(\bar{\chi})} \chi(b) \tau(\bar{\chi}) \\
& =\sum_{b=1}^{f} \sum_{a=1}^{f} \chi(a) e^{-2 \pi i a b / f} \sum_{c=1}^{f} \bar{\chi}(c) e^{2 \pi i c b / f} \\
& =\sum_{a=1}^{f} \sum_{c=1}^{f} \chi(a) \bar{\chi}(c) \sum_{b=1}^{f} e^{2 \pi i(c-a) b / f}
\end{aligned}
$$

But the RHS is either 0 if $a \neq c$ or f if $a=c$ and so

$$
\begin{aligned}
\varphi(f)|\tau(\chi)|^{2} & =f \sum_{a=1}^{f}|\chi(a)|^{2} \\
& =f \varphi(f)
\end{aligned}
$$

which gives the desired result.
(11.6) The functional equation. A section containing two theorems without proofs because either they are too hard or unilluminating.

Definition 4. A character χ is said to be odd if $\chi(-1)=-1$. It is even if $\chi(-1)=1$.
Theorem 5. Suppose χ is a character of conductor f_{χ}. If $\chi(-1)=-1$ let $\delta_{\chi}=1$ and if $\chi(-1)=1$ let $\delta_{\chi}=0$. Then

$$
f_{\chi}^{s / 2} \Gamma_{\mathbb{R}}\left(s+\delta_{\chi}\right) L(\chi, s)=W_{\chi} f_{\chi}^{(1-s) / 2} \Gamma_{\mathbb{R}}\left(1-s+\delta_{\chi}\right) L(\bar{\chi}, 1-s)
$$

where $W_{\chi}=\frac{\tau(\chi)}{i^{\delta_{\chi}} \sqrt{f_{\chi}}}$.
Recall that we showed in class that if $K=\mathbb{Q}\left(\zeta_{N}\right)$ then

$$
\zeta_{K}(s)=\prod_{\mathfrak{p} \mid N}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right) \prod_{\chi} L(\chi \bmod N \bmod N, s)
$$

Theorem 6. If K / \mathbb{Q} is abelian then

$$
\zeta_{K}(s)=\prod_{\chi} L(\chi, s)
$$

where χ ranges through the character of the abelian Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
(11.7) The value at 1.

Theorem 7. Suppose χ is a nontrivial character.

1. If $\chi(-1)=-1$ (χ is said to be odd) then

$$
L(\chi, 1)=\frac{\pi i \tau(\chi)}{f_{\chi}} B_{1, \bar{\chi}}
$$

2. If $\chi(-1)=1$ (χ is said to be even) then

$$
L(\chi, 1)=-\frac{\tau(\chi)}{f_{\chi}} \sum_{a=1}^{f_{\chi}} \bar{\chi}(a) \log \left|1-\zeta_{f_{\chi}}^{a}\right|
$$

Proof. Part one: Using the functional equation for χ odd with $\delta_{\chi}=1$ we get

$$
\begin{aligned}
L(\chi, 1) & =\frac{W_{\chi} f_{\chi}^{-1 / 2} \Gamma_{\mathbb{R}}(1) L(\bar{\chi}, 0)}{\Gamma_{\mathbb{R}}(2)} \\
& =-\frac{\pi \tau(\chi) B_{1, \bar{\chi}}}{i f_{\chi}} \\
& =\frac{\pi i \tau(\chi)}{f_{\chi}} B_{1, \bar{\chi}}
\end{aligned}
$$

where $\Gamma_{\mathbb{R}}(2)=\pi^{-1} \Gamma(2)=\pi^{-1}$ and $\Gamma_{\mathbb{R}}(1)=\pi^{-1 / 2} \Gamma(1 / 2)=1$.
Part two: For $\chi(-1)=1$ and $\chi \neq 1$ everything converges in the following computation. We are using Lemma 2 for replacing $\chi(n)$ with Gauss sums.

$$
\begin{aligned}
L(\chi, 1) & =\sum_{n \geq 1} \frac{\chi(n)}{n} \\
& =\sum_{n \geq 1} \frac{1}{n \tau(\bar{\chi})} \sum_{a=1}^{f} \bar{\chi}(a) e^{2 \pi i a n / f} \\
& =\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{f} \bar{\chi}(a) \sum_{n \geq 1} \frac{1}{n} e^{2 \pi i a n / f} \\
& =-\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{f} \bar{\chi}(a) \log \left(1-\zeta_{f}^{a}\right)
\end{aligned}
$$

But $\tau(\bar{\chi})=\chi(-1) \overline{\tau(\chi)}=\overline{\tau(\chi)}=f / \tau(\chi)$ and $\log \left(1-\zeta_{f}^{a}\right)+\log \left(1-\zeta_{f}^{-a}\right)=2 \log \left|1-\zeta_{f}^{a}\right|$ and so

$$
\begin{aligned}
L(\chi, 1) & =-\frac{\tau(\chi)}{f} \frac{1}{2} \sum_{a=1}^{f}\left(\bar{\chi}(a) \log \left(1-\zeta_{f}^{a}\right)+\bar{\chi}(-a) \log \left(1-\zeta_{f}^{-a}\right)\right) \\
& =-\frac{\tau(\chi)}{f} \sum_{a=1}^{f} \bar{\chi}(a) \log \left|1-\zeta_{f_{\chi}}^{a}\right|
\end{aligned}
$$

since $\chi(-1)=1$.

Corollary 8. If χ is odd then $B_{1, \chi} \neq 0$.
Proof. Follows from the previous theorem and the fact that $L(\chi, 1) \neq 0$. There is no elementary proof of this.

Example 9. If $\chi_{3}=\left(\frac{\dot{\overline{3}}}{3}\right)$ then we compute $B_{1, \overline{\chi_{3}}}=-1 / 3$ and we already computed $\tau\left(\chi_{3}\right)=i \sqrt{3}$ and $f_{\chi}=3$ and so we deduce that

$$
L\left(\chi_{3}, 1\right)=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{5}+\cdots=\frac{\pi}{3 \sqrt{3}}
$$

