Introduction to Algebraic Number Theory Lecture 28

Andrei Jorza

11 Special values of the ζ-function and of L-functions

(11.8) The conductor-discriminant formula.

Lemma 1. Let K be a number field which is Galois over \mathbb{Q} with abelian Galois group G. Recall that K is then either totally real $\left(r_{1}=n=[K: \mathbb{Q}], r_{2}=0\right)$ or totally complex $\left(r_{1}=0, r_{2}=n / 2\right)$.

1. If K is totally real then every character $\chi \in \widehat{G}$ is even.
2. If K is totally complex then $n / 2$ of the n characters $\chi \in \widehat{G}$ are even and $n / 2$ are odd.

Proof. By Kronecker-Weber $K \subset \mathbb{Q}\left(\zeta_{N}\right)$ for some N and then $G \cong G_{\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}} / G_{\mathbb{Q}\left(\zeta_{N}\right) / K}$. Let $\sigma \in G_{\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}}$ correspond to $-1 \in(\mathbb{Z} / N \mathbb{Z})^{\times} \cong G_{\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}}$. The automorphism σ takes ζ_{N} to ζ_{N}^{-1} and so $\zeta(z)=\bar{z}$ is simply complex conjugation.

Also denote by σ is image in G and let $\psi \in \widehat{\widehat{G}}$ be associated to σ, i.e., $\psi(c h i)=\chi(\sigma)$. Here σ is the image of -1 and so $\psi(\chi)=\chi(-1)$ which is either 1 or -1 . Thus to count the even/odd characters it suffices to count $\operatorname{ker} \psi$ in which case $|\operatorname{ker} \psi|$ is the number of even characters. But $|\operatorname{ker} \psi|=n /|\operatorname{Im} \psi|$ and this is either n if $\operatorname{Im} \psi=1$ or $n / 2$ if $\operatorname{Im} \psi=\{-1,1\}$.

If $\sigma \neq 1$ in G then there exists a character χ such that $\chi(\sigma) \neq 1$ (for example the identity character on the quotient $G \rightarrow\langle\sigma\rangle \cong\{-1,1\}$) and so $\operatorname{Im} \psi=1$ if and only if $\sigma \neq 1$. But σ is complex conjugation and this is trivial in G if and only if it fixed K if and only if K is totally real.

Theorem 2 (Conductor-discriminant). Let K be a number field with abelian Galois group G over \mathbb{Q}.

1. $\prod_{\chi \in \widehat{G}} f_{\chi}=|\operatorname{disc}(K)|$.
2. $\prod_{\chi \in \widehat{G}} \tau(\chi)=\left\{\begin{array}{ll}\sqrt{|\operatorname{disc}(K)|} & K \text { totally real } \\ i^{[K: \mathbb{Q}] / 2} \sqrt{|\operatorname{disc}(K)|} & K \text { totally complex }\end{array}\right.$.

Proof. Write $d_{K}=|\operatorname{disc}(K)|$. Recall the functional equations

$$
\Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)=d_{K}^{1 / 2-s} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)
$$

and

$$
\Gamma_{\mathbb{R}}\left(s+\delta_{\chi}\right) L(\chi, s)=W_{\chi} f_{\chi}^{1 / 2-s} \Gamma_{\mathbb{R}}\left(1-s+\delta_{\chi}\right) L(\bar{\chi}, 1-s)
$$

and the decomposition

$$
\zeta_{K}(s)=\prod_{\chi \in G} L(\chi, s)
$$

Totally real case: $r_{1}=n, r_{2}=0$ and by the lemma all characters are even and so all $\delta_{\chi}=0$. Divide the first functional equation by the product of the second ones over $\chi \in \widehat{G}$. Get

$$
\begin{aligned}
\frac{\Gamma_{\mathbb{R}}(s)^{n} \zeta_{K}(s)}{\prod_{\chi \in \widehat{G}} \Gamma_{\mathbb{R}}(s) L(\chi, s)} & =\frac{d_{K}^{1 / 2-s} \Gamma_{\mathbb{R}}(1-s)^{n} \zeta_{K}(1-s)}{\prod_{\chi} W_{\chi} f_{\chi}^{1 / 2-s} \Gamma_{\mathbb{R}}(1-s) L(\bar{\chi}, 1-s)} \\
1 & =\frac{1}{\prod W_{\chi}}\left(\frac{d_{K}}{\prod f_{\chi}}\right)^{1 / 2-s} \\
\prod W_{\chi} & =\left(\frac{d_{K}}{\prod f_{\chi}}\right)^{1 / 2-s}
\end{aligned}
$$

Since the LHS is a constant it follows that $d_{K} / \prod f_{\chi}$ must be 1 or else its powers are not constant. This implies the first part. For the second part (using $\delta_{\chi}=0$):

$$
\begin{aligned}
1 & =\prod W_{\chi} \\
& =\prod \frac{\tau(\chi)}{i^{\delta_{\chi}} \sqrt{f_{\chi}}} \\
& =\frac{\prod \tau(\chi)}{i^{n / 2} \sqrt{\prod f_{\chi}}}
\end{aligned}
$$

which implies that $\Pi \tau(\chi)=i^{n / 2} \sqrt{d_{K}}$.
For K totally complex: $r_{1}=0, r_{2}=n / 2$ and $n / 2$ of the δ_{χ} are 0 and $n / 2$ are 1 . As above we get

$$
\begin{aligned}
\frac{\Gamma_{\mathbb{C}}(s)^{n / 2} \zeta_{K}(s)}{\prod_{\text {half }} \Gamma_{\mathbb{R}}(s) \prod_{\text {half }} \Gamma_{\mathbb{R}}(s+1) \prod L(\chi, s)} & =\frac{d_{K}^{1 / 2-s} \Gamma_{\mathbb{C}}(1-s)^{n / 2} \zeta_{K}(1-s)}{\prod_{\chi} W_{\chi} f_{\chi}^{1 / 2-s} \prod_{\text {half }} \Gamma_{\mathbb{R}}(1-s) \prod_{\text {half }} \Gamma_{\mathbb{R}}(1-s+1) \prod L(\bar{\chi}, 1-s)} \\
\left(\frac{\Gamma_{\mathbb{C}}(s)}{\Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1)}\right)^{n / 2} \frac{\zeta_{K}(s)}{\prod L(\chi, s)} & =\frac{d_{K}^{1 / 2-s}}{\prod_{\chi} W_{\chi} f_{\chi}^{1 / 2-s}}\left(\frac{\Gamma_{\mathbb{C}}(1-s)}{\Gamma_{\mathbb{R}}(1-s) \Gamma_{\mathbb{R}}(1-s+1)}\right)^{n / 2} \frac{\zeta_{K}(1-s)}{\prod L(\bar{\chi}, 1-s)}
\end{aligned}
$$

The proof from the totally real case goes through after noticing that

$$
\begin{aligned}
\Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1) & =\pi^{-1 / 2-s} \Gamma(s / 2) \Gamma(s / 2+1 / 2) \\
& =2^{1-s} \pi^{-s} \Gamma(2 s) \\
& =\Gamma_{\mathbb{C}}(s)
\end{aligned}
$$

