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11 Special values of the ζ-function and of L-functions
(11.8) The conductor-discriminant formula.

Lemma 1. Let K be a number field which is Galois over Q with abelian Galois group G. Recall that K is
then either totally real (r1 = n = [K : Q], r2 = 0) or totally complex (r1 = 0, r2 = n/2).

1. If K is totally real then every character χ ∈ Ĝ is even.

2. If K is totally complex then n/2 of the n characters χ ∈ Ĝ are even and n/2 are odd.

Proof. By Kronecker-Weber K ⊂ Q(ζN ) for some N and then G ∼= GQ(ζN )/Q/GQ(ζN )/K . Let σ ∈ GQ(ζN )/Q
correspond to −1 ∈ (Z/NZ)× ∼= GQ(ζN )/Q. The automorphism σ takes ζN to ζ−1N and so ζ(z) = z is simply
complex conjugation.

Also denote by σ is image in G and let ψ ∈ ̂̂G be associated to σ, i.e., ψ(chi) = χ(σ). Here σ is the image
of −1 and so ψ(χ) = χ(−1) which is either 1 or −1. Thus to count the even/odd characters it suffices to
count kerψ in which case | kerψ| is the number of even characters. But | kerψ| = n/| Imψ| and this is either
n if Imψ = 1 or n/2 if Imψ = {−1, 1}.

If σ 6= 1 in G then there exists a character χ such that χ(σ) 6= 1 (for example the identity character on
the quotient G → 〈σ〉 ∼= {−1, 1}) and so Imψ = 1 if and only if σ 6= 1. But σ is complex conjugation and
this is trivial in G if and only if it fixed K if and only if K is totally real.

Theorem 2 (Conductor-discriminant). Let K be a number field with abelian Galois group G over Q.

1.
∏
χ∈Ĝ fχ = |disc(K)|.

2.
∏
χ∈Ĝ τ(χ) =

{√
|disc(K)| K totally real

i[K:Q]/2
√
|disc(K)| K totally complex

.

Proof. Write dK = |disc(K)|. Recall the functional equations

ΓR(s)r1ΓC(s)r2ζK(s) = d
1/2−s
K ΓR(1− s)r1ΓC(1− s)r2ζK(1− s)

and
ΓR(s+ δχ)L(χ, s) = Wχf

1/2−s
χ ΓR(1− s+ δχ)L(χ, 1− s)

and the decomposition

ζK(s) =
∏
χ∈G

L(χ, s)
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Totally real case: r1 = n, r2 = 0 and by the lemma all characters are even and so all δχ = 0. Divide the

first functional equation by the product of the second ones over χ ∈ Ĝ. Get

ΓR(s)nζK(s)∏
χ∈Ĝ ΓR(s)L(χ, s)

=
d
1/2−s
K ΓR(1− s)nζK(1− s)∏

χWχf
1/2−s
χ ΓR(1− s)L(χ, 1− s)

1 =
1∏
Wχ

(
dK∏
fχ

)1/2−s

∏
Wχ =

(
dK∏
fχ

)1/2−s

Since the LHS is a constant it follows that dK/
∏
fχ must be 1 or else its powers are not constant. This

implies the first part. For the second part (using δχ = 0):

1 =
∏

Wχ

=
∏ τ(χ)

iδχ
√
fχ

=

∏
τ(χ)

in/2
√∏

fχ

which implies that
∏
τ(χ) = in/2

√
dK .

For K totally complex: r1 = 0, r2 = n/2 and n/2 of the δχ are 0 and n/2 are 1. As above we get

ΓC(s)n/2ζK(s)∏
half ΓR(s)

∏
half ΓR(s+ 1)

∏
L(χ, s)

=
d
1/2−s
K ΓC(1− s)n/2ζK(1− s)∏

χWχf
1/2−s
χ

∏
half ΓR(1− s)

∏
half ΓR(1− s+ 1)

∏
L(χ, 1− s)(

ΓC(s)

ΓR(s)ΓR(s+ 1)

)n/2
ζK(s)∏
L(χ, s)

=
d
1/2−s
K∏

χWχf
1/2−s
χ

(
ΓC(1− s)

ΓR(1− s)ΓR(1− s+ 1)

)n/2
ζK(1− s)∏
L(χ, 1− s)

The proof from the totally real case goes through after noticing that

ΓR(s)ΓR(s+ 1) = π−1/2−sΓ(s/2)Γ(s/2 + 1/2)

= 21−sπ−sΓ(2s)

= ΓC(s)
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