Introduction to Algebraic Number Theory Lecture 29

Andrei Jorza

12 Cyclotomic units

This is from Washington, Introduction to Cyclotomic Fields.
(12.1) Let V_{n} be the group generated by $\pm \zeta_{n}$ and $1-\zeta_{n}^{a}$ for all $1<a<n$.

Remark 1. $V_{n} \subset \mathbb{Z}\left[\zeta_{n}\right]^{\times}$.
Definition 1. If K / \mathbb{Q} is a number field with abelian Galois group over \mathbb{Q} then the cyclotomic units of K are $V_{n} \cap \mathcal{O}_{K}^{\times}$for n such that $K \subset \mathbb{Q}\left(\zeta_{n}\right)$. Denote the group of cyclotomic units C_{K}.

Let $p>2$ be a prime and $m \geq 1$. Consider the number fields $K=\mathbb{Q}\left(\zeta_{p^{m}}\right)$ totally complex of degree $p^{m-1}(p-1) / 2$ over \mathbb{Q} and $K^{+}=\mathbb{Q}\left(\zeta_{p^{m}}\right)^{+}=\mathbb{Q}\left(\zeta_{p^{m}}+\zeta_{p^{m}}^{-1}\right)$ totally real of degree $p^{m-1}(p-1) / 2$ over \mathbb{Q}. Note that K / K^{+}is quadratic generated by an imaginary quadratic number. Then

$$
\operatorname{rank} \mathcal{O}_{K}^{\times}=\operatorname{rank} \mathcal{O}_{K^{+}}^{\times}=p^{m-1}(p-1) / 2-1
$$

Lemma 2. For $1<a<p^{m} / 2$ coprime to p let

$$
\xi_{a}=\zeta_{p^{m}}^{(1-a) / 2} \frac{1-\zeta_{p^{m}}^{a}}{1-\zeta_{p^{m}}}
$$

1. $\xi_{a} \in \mathcal{O}_{K^{+}}^{\times}$.
2. The group C_{K} of cyclotomic units of K are generated by $\pm \zeta_{p^{m}}$ and the units ξ_{a} for $1<a<p^{m} / 2$ coprime to p.
3. The group $C_{K^{+}}$of cyclotomic units of K^{+}are generated by -1 and the units ξ_{a} for $1<a<p^{m} / 2$ coprime to p.

Proof. Part one: First, write $\zeta=\zeta_{p^{m}}$ in which case

$$
\begin{aligned}
\zeta^{1 / 2} & =e^{\pi i / p^{m}} \\
& =e^{2 \pi i+\pi i / p^{m}} \\
& =-e^{2 \pi i\left(p^{m}+1\right) /\left(2 p^{m}\right)} \\
& =-\zeta^{\left(p^{m}+1\right) / 2} \in K
\end{aligned}
$$

Next, it is clear that ξ_{a} is real and so $\xi_{a} \in K^{+}$and it is invertible because $1-\zeta \mid 1-\zeta^{a}$ and since $(a, p)=1$ it follows that $a b=p k+1$ for some k in which case $1-\zeta^{a} \mid 1-\zeta=1-\left(\zeta^{a}\right)^{b}$.

Part two: C_{K} is generated by $\pm \zeta$ and $1-\zeta^{a}$ for some a. Write $a=b p^{k}$ with $p \nmid p$. Note that

$$
1-X^{p^{k}}=\prod_{j=0}^{p^{k}-1}\left(1-\zeta_{p^{k}}^{j} X\right)=\prod_{j}\left(1-\zeta^{j p^{m-k}} X\right)
$$

and so

$$
1-\zeta^{a}=\prod_{j}\left(1-\zeta^{b+j p^{m-k}}\right)
$$

If $k<m$, i.e., if $p^{m} \nmid a$ then the RHS consists of factors of the type $1-\zeta^{a}$ with $(a, p)=1$ and so C_{K} is generated by $\pm \zeta$ and $1-\zeta^{a}$ for $(a, p)=1$. Moreover, $1-\zeta^{-a}=-\zeta^{-a}\left(1-\zeta^{a}\right)$ so C_{K} is generated by $\pm \zeta$ and $1-\zeta^{a}$ for $1 \leq a<p^{m} / 2$ coprime to p.

Suppose $\xi \in C_{K}$. Then

$$
\xi= \pm \zeta^{k} \prod_{1<a<p^{m} / 2,(a, p)=1}\left(1-\zeta^{a}\right)^{c_{a}}
$$

and on the level of ideals $(1)=(\xi)=\prod\left(1-\zeta^{a}\right)^{c_{a}}$. But $\left(1-\zeta^{a}\right)=(1-\zeta)$ and so $\sum c_{a}=0$. Thus

$$
\xi= \pm \zeta^{k+\sum c_{a}(a-1) / 2} \prod_{1<a<p^{m} / 2,(a, p)=1} \xi_{a}^{c_{a}}
$$

Part three: we only require that ξ be real in which case $k=0$ in the above formula.
(12.2) Cyclotomic units of K^{+}.

Lemma 3. Let G be a finite abelian group and $f: G \rightarrow \mathbb{C}$ be any function. Then

$$
\operatorname{det}\left(f\left(\sigma \tau^{-1}\right)-f(\sigma)\right)_{\sigma, \tau \neq 1}=\prod_{\chi \in \widehat{G}, \chi \neq 1} \sum_{\sigma \in G} \chi(\sigma) f(\sigma)
$$

Proof. Do an example with $G=\mathbb{Z} / 3 \mathbb{Z}$.

