Introduction to Algebraic Number Theory Lecture 29

Andrei Jorza

12 Cyclotomic units

This is from Washington, Introduction to Cyclotomic Fields.

(12.1) Let V_n be the group generated by $\pm \zeta_n$ and $1 - \zeta_n^a$ for all 1 < a < n.

Remark 1. $V_n \subset \mathbb{Z}[\zeta_n]^{\times}$.

Definition 1. If K/\mathbb{Q} is a number field with abelian Galois group over \mathbb{Q} then the *cyclotomic units* of K are $V_n \cap \mathcal{O}_K^{\times}$ for n such that $K \subset \mathbb{Q}(\zeta_n)$. Denote the group of cyclotomic units C_K .

Let p > 2 be a prime and $m \ge 1$. Consider the number fields $K = \mathbb{Q}(\zeta_{p^m})$ totally complex of degree $p^{m-1}(p-1)/2$ over \mathbb{Q} and $K^+ = \mathbb{Q}(\zeta_{p^m})^+ = \mathbb{Q}(\zeta_{p^m} + \zeta_{p^m}^{-1})$ totally real of degree $p^{m-1}(p-1)/2$ over \mathbb{Q} . Note that K/K^+ is quadratic generated by an imaginary quadratic number. Then

$$\operatorname{rank} \mathcal{O}_{K}^{\times} = \operatorname{rank} \mathcal{O}_{K^{+}}^{\times} = p^{m-1}(p-1)/2 - 1$$

Lemma 2. For $1 < a < p^m/2$ coprime to p let

$$\xi_a = \zeta_{p^m}^{(1-a)/2} \frac{1 - \zeta_{p^m}^a}{1 - \zeta_{p^m}}$$

1. $\xi_a \in \mathcal{O}_{K^+}^{\times}$.

- 2. The group C_K of cyclotomic units of K are generated by $\pm \zeta_{p^m}$ and the units ξ_a for $1 < a < p^m/2$ coprime to p.
- 3. The group C_{K^+} of cyclotomic units of K^+ are generated by -1 and the units ξ_a for $1 < a < p^m/2$ coprime to p.

Proof. Part one: First, write $\zeta = \zeta_{p^m}$ in which case

$$\begin{aligned} \zeta^{1/2} &= e^{\pi i/p^m} \\ &= e^{2\pi i + \pi i/p^m} \\ &= -e^{2\pi i(p^m + 1)/(2p^m)} \\ &= -\zeta^{(p^m + 1)/2} \in K \end{aligned}$$

Next, it is clear that ξ_a is real and so $\xi_a \in K^+$ and it is invertible because $1 - \zeta \mid 1 - \zeta^a$ and since (a, p) = 1 it follows that ab = pk + 1 for some k in which case $1 - \zeta^a \mid 1 - \zeta = 1 - (\zeta^a)^b$.

Part two: C_K is generated by $\pm \zeta$ and $1 - \zeta^a$ for some a. Write $a = bp^k$ with $p \nmid p$. Note that

$$1 - X^{p^k} = \prod_{j=0}^{p^k - 1} (1 - \zeta_{p^k}^j X) = \prod_j (1 - \zeta^{jp^{m-k}} X)$$

and so

$$1 - \zeta^a = \prod_j (1 - \zeta^{b+jp^{m-k}})$$

If k < m, i.e., if $p^m \nmid a$ then the RHS consists of factors of the type $1 - \zeta^a$ with (a, p) = 1 and so C_K is generated by $\pm \zeta$ and $1 - \zeta^a$ for (a, p) = 1. Moreover, $1 - \zeta^{-a} = -\zeta^{-a}(1 - \zeta^a)$ so C_K is generated by $\pm \zeta$ and $1 - \zeta^a$ for $1 \le a < p^m/2$ coprime to p.

Suppose $\xi \in C_K$. Then

$$\xi = \pm \zeta^k \prod_{1 < a < p^m/2, (a,p) = 1} (1 - \zeta^a)^{c_a}$$

and on the level of ideals $(1) = (\xi) = \prod (1 - \zeta^a)^{c_a}$. But $(1 - \zeta^a) = (1 - \zeta)$ and so $\sum c_a = 0$. Thus

$$\xi = \pm \zeta^{k + \sum c_a(a-1)/2} \prod_{1 < a < p^m/2, (a,p) = 1} \xi_a^{c_a}$$

Part three: we only require that ξ be real in which case k = 0 in the above formula.

(12.2) Cyclotomic units of K^+ .

Lemma 3. Let G be a finite abelian group and $f: G \to \mathbb{C}$ be any function. Then

$$\det(f(\sigma\tau^{-1}) - f(\sigma))_{\sigma,\tau \neq 1} = \prod_{\chi \in \widehat{G}, \chi \neq 1} \sum_{\sigma \in G} \chi(\sigma) f(\sigma)$$

Proof. Do an example with $G = \mathbb{Z}/3\mathbb{Z}$.