Introduction to Algebraic Number Theory Lecture 30

Andrei Jorza

12 Cyclotomic units

(12.3) Cyclotomic units of K^{+}(continued).

Theorem 1. The group $C_{K^{+}}$of cyclotomic units of K^{+}is a finite index subgroup of $\mathcal{O}_{K^{+}}^{\times}$and

$$
\left[\mathcal{O}_{K^{+}}^{\times}: C_{K^{+}}\right]=h_{K^{+}}
$$

is the class number.
Proof. Recall the map $\log \circ \iota: K^{+} \rightarrow \mathbb{R}^{p^{m-1}(p-1) / 2}$ with kernel ± 1, the roots of unity in K^{+}. Also recall that $\log \iota \mathcal{O}_{K^{+}}^{\times} \subset \Delta=\operatorname{ker} \sum$ lies in a hyperplane and is a lattice of full rank with volume equal to the regulator $R_{K^{+}}$. Thus we have $\log \iota C_{K^{+}} \subset \log \iota \mathcal{O}_{K^{+}}^{\times}$is a sublattice.

To show that $C_{K^{+}}$has finite index in the unit group it suffices to show that the volume of $C_{K^{+}}$, equal to the regulator R of the elements $\log \iota \xi_{a}$, is nonzero in which case

$$
\left[\mathcal{O}_{K^{+}}^{\times}: C_{K^{+}}\right]=R / R_{K^{+}}
$$

since $\log \iota$ eliminates only ± 1 from both groups.
To compute this regulator recall that $G_{K^{+} / \mathbb{Q}} \cong G_{K / \mathbb{Q}} /\{ \pm 1\}$ where $G_{K / \mathbb{Q}} \cong\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$. Thus writing σ_{a} for the element corresponding to $a \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}, G_{K^{+} / \mathbb{Q}}=\left\{\sigma_{a} \mid 1 \leq a<p^{m} / 2,(a, p)=1\right\}$, which is exactly one more that the number of ξ_{a}. Therefore we compute (we eliminate the trivial element from $G_{K^{+} / \mathbb{Q}}$ to obtain a square-matrix)

$$
\begin{aligned}
R & =\left|\operatorname{det}\left(\log \iota \xi_{a}\right)\right| \\
& =\left|\operatorname{det}\left(\log \left|\tau\left(\xi_{a}\right)\right|\right)_{\tau \neq 1}\right|
\end{aligned}
$$

as τ varies in $G_{K^{+} / \mathbb{Q}}$.
Let $\sigma_{a} \in G_{K^{+} / \mathbb{Q}} \cong G_{K / \mathbb{Q}} /\{ \pm 1\}$ correspond to $a \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$in which case

$$
\xi_{a}=\frac{\sigma_{a}\left(\zeta^{-1 / 2}(1-\zeta)\right)}{\zeta^{-1 / 2}(1-\zeta)}
$$

and if we write $f(\sigma)=\log \left|\sigma\left(\zeta^{-1 / 2}(1-\zeta)\right)\right|=\log |\sigma(1-\zeta)|$ then

$$
\log \left|\tau\left(\xi_{a}\right)\right|=f\left(\tau \sigma_{a}\right)-f(\tau)
$$

Thus

$$
\begin{aligned}
R & =\left|\operatorname{det}\left(\log \left|\tau\left(\xi_{a}\right)\right|\right)_{a, \tau \neq 1}\right| \\
& =\left|\operatorname{det}\left(f\left(\tau \sigma_{a}\right)-f(\tau)\right)_{a, \tau \neq 1}\right| \\
& =\left|\operatorname{det}\left(f\left(\tau \sigma^{-1}\right)-f(\tau)\right)_{\sigma, \tau \neq 1}\right| \\
& =\left|\prod_{\chi \neq 1} \sum_{\sigma \in G} \chi(\sigma) f(\sigma)\right| \\
& =\left|\prod_{\chi \neq 1} \sum_{\sigma \in G} \chi(\sigma) \log \right| \sigma\left(\zeta^{-1 / 2}(1-\zeta)\right)| | \\
& =\left|\prod_{\chi \neq 1} \sum_{1 \leq a<p^{m} / 2,(a, p)=1} \chi(a) \log \right| 1-\zeta^{a}| | \\
& =\left|\prod_{\chi \neq 1} \frac{1}{2} \sum_{1 \leq a \leq p^{m}} \chi(a) \log \right| 1-\zeta^{a}| |
\end{aligned}
$$

where the last line comes from the fact that $\log \left|1-\zeta^{a}\right|=\log \left|1-\zeta^{-a}\right|$.
Let $\chi \neq 1$ with conductor $f_{\chi}=p^{k}$. Then

$$
\begin{aligned}
\sum_{a=1}^{p^{m}} \chi(a) \log \left|1-\zeta^{a}\right| & =\sum_{b=1}^{p^{k}} \sum_{\left(\bmod p^{k}\right)} \chi(a) \log \left|1-\zeta^{a}\right| \\
& \left.=\sum_{b=1}^{p^{k}} \chi(b) \sum_{a \equiv b} \mid \bmod p^{k}\right) \\
& =\sum_{b=1}^{p^{k}} \chi(b) \log \left|1-\zeta^{a}\right| \\
& =\sum_{a \equiv b}^{p^{k}}{\left.\bmod p^{k}\right)}\left(1-\zeta^{a}\right) \mid \\
& =\sum_{b=1}^{p^{k}} \chi(b) \log \left|\prod^{p^{k}}\left(1-\zeta^{b+p^{k} c}\right)\right| \\
& =\sum_{b=1}^{p^{k}} \chi(b) \log \left|1-\zeta^{b p^{m-k}}\right| \\
& =-\frac{f_{\bar{\chi}} L(\bar{\chi}, 1)}{\tau(\bar{\chi})} \\
& =-\tau(\chi) L(\bar{\chi}, 1)
\end{aligned}
$$

since χ is even as K^{+}is totally real.

Finally $\left(\right.$ write $\left.n=p^{m-1}(p-1) / 2=\left[K^{+}: \mathbb{Q}\right]\right)$

$$
\begin{aligned}
{\left[\mathcal{O}_{K^{+}}^{\times}: C_{K^{+}}\right] } & =\frac{R}{R_{K^{+}}} \\
& =\frac{\prod_{\chi \neq 1} 2^{-1} \tau(\chi) L(\bar{\chi}, 1)}{R_{K^{+}}} \\
& =\frac{2^{1-n} \sqrt{d_{K}} \prod_{\chi \neq 1} L(\chi, 1)}{R_{K^{+}}} \\
& =\frac{2^{1-n} \sqrt{d_{K}} \lim _{s \rightarrow 1}\left(\zeta_{K}(s) / \zeta(s)\right)}{R_{K^{+}}} \\
& =\frac{2^{1-n} \sqrt{d_{K}} \frac{2^{n}(2 \pi)^{0} h_{K^{+}} R_{K^{+}}}{w_{K^{+}} \sqrt{d_{K}}}}{R_{K^{+}}} \\
& =h_{K^{+}}
\end{aligned}
$$

using the analytic class number formula.

