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13 A peculiar integral

This section is due to David Speyer.
We will compute ∫ 1

0

log(1 + x2+
√
3)dx

1 + x
=
π2

12
(1−

√
3) + log(2) log(1 +

√
3)

(13.1) Let F (α) =

∫ 1

0

log(1 + xα)dx

1 + x
. Using integration by parts get

F (α) =

∫ 1

0

log(1 + xα)d log(1 + x)

= (log 2)2 − F (α−1)

But also

F (α) =

∫ 1

0

∑
k,n≥1

(−1)k−1xk−1(−1)n−1xαn

n

=
∑
k,n≥1

(−1)n+k

n(nα+ k)

and so

F (α)− F (α−1) =
∑
k,n≥1

(−1)n+k

n

(
1

nα+ k
− 1

nα−1 + k

)

= (α−1 − α)
∑
k,n≥1

(−1)n+k

n2 + (α+ α−1)nk + k2

(13.2) For α = 2 +
√

3 this gives

F (α)− F (α−1) = −2
√

3
∑
k,n≥1

(−1)n+k

n2 + 4kn+ k4

which, under the change of variables m = k + 2n can be rewritten as

F (α)− F (α−1) = −2
√

3
∑

m>2n>0

(−1)m+n

m2 − 3n2

Recall the maps K×
ι→ R2 log→ R2

∑
→ R taking O×K to the lattice log ιO×K = (RK ,−RK)Z ⊂ ∆ =

(1,−1)R ⊂ R2 where RK = log(2 +
√

3) is the regulator since O×K = ±(2 +
√

3)Z. As in the proof of the

1



Dirichlet unit theorem the region D = {y < x ≤ y + 2RK} is a fundamental domain of representative for
R2/ log ιO×K and the preimage of this under log gives the region {(x, y) ∈ R2||y| < |x| ≤ |y|(2 +

√
3)2}.

Writing (x, y) = ι(m+ n
√

3), i.e., x = m+ n
√

3 and y = m− n
√

3 the condition m ≥ 2n > 0 translates into
xy > 0 and (x, y) ∈ log−1D in other words (x, y) ∈ log−1D ∩ ι(O×K) with N(x, y) > 0.

Let O±K ⊂ OK be where the norm has sign ±. Note that if u = ±(2+
√

3)k and x = m+n
√

3 if we define

σ(m+ n
√

3) = (−1)m+n

then

σ(xu) = σ(x)

NK/Q(υ) = NK/Q(x)

the latter because all units in OK have norm +1, by their classification. This states that σ and NK/Q are

well-defined independent of any translates by O×K so in fact∑
x∈log−1D,N(x)>0

σ(x)

N(x)
=

∑
x∈O+

K/O
×
K

σ(x)

N(x)

under the identification log−1D = OK − 0/O×K , and this is simply∑
x∈log−1D,N(x)>0

σ(x)

N(x)
=

∑
m≥2n>0

σ(m+ n
√

3)

NK/Q(m+ n
√

3)

=
∑

m>2n>0

σ(m+ n
√

3)

NK/Q(m+ n
√

3)
+
∑
n≥1

(−1)n

n2

=
∑

m>2n>0

(−1)m+n)

m2 − 3n2
− π2

12

because ∑
n≥1

(−1)n

n2
=

∑
n∈2Z,n≥1

1

n2
−

∑
n∈2Z+1,n≥1

1

n2

= 2
∑

n∈2Z,n≥2

1

n2
−
∑
n≥1

1

n2

= 2
∑
k≥1

1

(2k)2
− ζ(2)

= ζ(2)/2− ζ(2)

= −π
2

12

(13.3) So we only need to compute ∑
x∈O+

K/O
×
K

σ(x)

N(x)

Let χ(x) = signNK/Q(x) in which case we see that χ(xu) = χ(x) for x ∈ OK − 0 and u ∈ O×K from the

equality of norms. Then to count only x ∈ O+
K we note that (1 + χ(x))/2 is 1 if x ∈ O+

K and 0 if x ∈ O−K
and so ∑

x∈O+
K/O

×
K

σ(x)

N(x)
=

1

2

∑
x∈OK−0/O×

K

σ(x)(1 + χ(x))

|NK/Q(x)|
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where the absolute value appears because the only terms that show up in the sum are those where the norm
is positive.

(13.4) Since σ, NK/Q and χ do not change upon multiplication by units we can rewrite this as a sum over

ideals as the class number of Q(
√

3) is 1. Indeed

1

2

∑
x∈OK−0/O×

K

σ(x)(1 + χ(x))

|NK/Q(x)|
=

1

2

∑
I 6=0

σ(I)(1 + χ(I))

|NK/Q(I)|

=
1

2

∑
I 6=0

σ(I)(1 + χ(I))

||I||

where σ(I), χ(I) andNK/Q(I) are defined by σ(x), χ(x) andNK/Q(x) for any generator x of I and |NK/Q(I)| =
I.

(13.5) We remark that σ(x) = 1 if and only if $ = 1 +
√

3 | x. Indeed,

m+ n
√

3

1 +
√

3
=

3n−m
2

+
m− n

2

√
3

is an algebraic integer if and only if m+ n is even, i.e., if σ(m+ n
√

3) = 1. Thus

U(s) =
∑
I 6=0

σ(I)

||I||s

=
∑
$|I

1

||I||s
−
∑
$-I

1

||I||s

=
∑
n≥1

∑
v$(I)=n

1

||I||s
−
∑
$-I

1

||I||s

=
∑
n≥1

∑
$-J

1

2ns||J ||2
−
∑
$-I

1

||I||s

=

(
−1 +

1

2s
+

1

4s
+ · · ·

)∑
$-I

1

||I||s

=

(
−2 +

1

1− 2−s

) ∏
p6=$

(
1− 1

||p||s

)−1

= (−1 + 21−s)
∏
p

(
1− 1

||p||s

)−1
= (−1 + 21−s)ζK(s)

where in the sum corresponding to v$(I) = n we write I = $nJ with $ - J . Here the last product is over
all prime ideals p of OK .
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Thus ∑
I 6=0

σ(I)

||I||
= U(1)

= lim
s→1

−1 + 21−s

s− 1
lim
s→1

(s− 1)ζK(s)

= − log(2)
22RK

2
√

12

= − log(2) log(2 +
√

3)√
3

where the last line is the analytic class number formula.

(13.6) Next we compute

V (s) =
∑
I 6=0

σ(I)χ(I)

||I||2

=
∑
n≥1

∑
$-J

χ($nJ)

2ns||J ||s
−
∑
$-I

χ(I)

||I||s

but now χ($nJ) = χ($)nχ(J) = (−1)nχ(J) and so

V (s) =

(
−1− 1

2s
+

1

4s
− 1

8s
· · ·
)∑
$-I

χ(I)

||I||s

=
−1− 21−s

1 + 2−s

∏
p6=$

(
1− χ(p)

||p||s

)−1

=
−1− 21−s

1 + 2−s
(1 + 2−s)

∏
p

(
1− χ(p)

||p||s

)−1
= (−1− 21−s)L(χ, s)

because χ($) = −1 and here we denoted

L(χ, s) =
∏
p

(
1− χ(p)

||p||s

)−1
From the homework

L(χ, s) = L (χ4, s)L (χ3, s)

where χd(x) =
(
x
d

)
and so to compute V (1) =

∑
I 6=0

σ(I)χ(I)
||I|| we only need to compute the two special values.

But characters χ4 and χ3 are odd as −1 is not a quadratic residue mod 4 or 3 and so

L(χ4, 1) =
πiτ(χ4)B1,χ4

fχ4

=
πi · 2i · − 1

2

4
=
π

4

and

L(χ3, 1) =
πiτ(χ3)B1,χ3

3
=
πi · i

√
3 · − 1

3

3
=

π

3
√

3

and so

L(χ, 1) =
π2

12
√

3
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giving

V (1) = −2L(χ, 1) = − π2

6
√

3

(13.7) Putting everything together we get

1

2

∑
I 6=0

σ(I)(1 + χ(I))

||I||
=

1

2

(
− log(2) log(2 +

√
3)√

3
− π2

6
√

3

)

and so

F (2 +
√

3)− F (2−
√

3) = −2
√

3

(
π2

12
+

1

2

(
− log(2) log(2 +

√
3)√

3
− π2

6
√

3

))
Together with F (2 +

√
3) + F (2−

√
3) = (log(2))2 this gives

F (2 +
√

3) =
(log 2)2

2
− π2

√
3

12
+
π2

12
+

log(2) log(2 +
√

3)

2
=
π2

12
(1−

√
3) + log(2) log(1 +

√
3)

as 2(2 +
√

3) = (1 +
√

3)2.

5


