Introduction to Algebraic Number Theory Lecture 31

Andrei Jorza

13 A peculiar integral

This section is due to David Speyer.

We will compute

$$\int_0^1 \frac{\log(1+x^{2+\sqrt{3}})dx}{1+x} = \frac{\pi^2}{12}(1-\sqrt{3}) + \log(2)\log(1+\sqrt{3})$$

(13.1) Let $F(\alpha) = \int_0^1 \frac{\log(1+x^{\alpha})dx}{1+x}$. Using integration by parts get

$$F(\alpha) = \int_0^1 \log(1+x^{\alpha}) d\log(1+x) = (\log 2)^2 - F(\alpha^{-1})$$

But also

$$F(\alpha) = \int_0^1 \sum_{k,n \ge 1} \frac{(-1)^{k-1} x^{k-1} (-1)^{n-1} x^{\alpha n}}{n}$$
$$= \sum_{k,n \ge 1} \frac{(-1)^{n+k}}{n(n\alpha+k)}$$

and so

$$F(\alpha) - F(\alpha^{-1}) = \sum_{k,n \ge 1} \frac{(-1)^{n+k}}{n} \left(\frac{1}{n\alpha + k} - \frac{1}{n\alpha^{-1} + k} \right)$$
$$= (\alpha^{-1} - \alpha) \sum_{k,n \ge 1} \frac{(-1)^{n+k}}{n^2 + (\alpha + \alpha^{-1})nk + k^2}$$

(13.2) For $\alpha = 2 + \sqrt{3}$ this gives

$$F(\alpha) - F(\alpha^{-1}) = -2\sqrt{3} \sum_{k,n \ge 1} \frac{(-1)^{n+k}}{n^2 + 4kn + k^4}$$

which, under the change of variables m = k + 2n can be rewritten as

$$F(\alpha) - F(\alpha^{-1}) = -2\sqrt{3} \sum_{m>2n>0} \frac{(-1)^{m+n}}{m^2 - 3n^2}$$

Recall the maps $K^{\times} \xrightarrow{\iota} \mathbb{R}^2 \xrightarrow{\log} \mathbb{R}^2 \xrightarrow{\Sigma} \mathbb{R}$ taking \mathcal{O}_K^{\times} to the lattice $\log \iota \mathcal{O}_K^{\times} = (R_K, -R_K)\mathbb{Z} \subset \Delta = (1, -1)\mathbb{R} \subset \mathbb{R}^2$ where $R_K = \log(2 + \sqrt{3})$ is the regulator since $\mathcal{O}_K^{\times} = \pm (2 + \sqrt{3})^{\mathbb{Z}}$. As in the proof of the

Dirichlet unit theorem the region $\mathcal{D} = \{y < x \leq y + 2R_K\}$ is a fundamental domain of representative for $\mathbb{R}^2/\log \iota \mathcal{O}_K^{\times}$ and the preimage of this under log gives the region $\{(x, y) \in \mathbb{R}^2 | |y| < |x| \leq |y|(2 + \sqrt{3})^2\}$. Writing $(x, y) = \iota(m + n\sqrt{3})$, i.e., $x = m + n\sqrt{3}$ and $y = m - n\sqrt{3}$ the condition $m \ge 2n > 0$ translates into xy > 0 and $(x, y) \in \log^{-1} \mathcal{D}$ in other words $(x, y) \in \log^{-1} \mathcal{D} \cap \iota(\mathcal{O}_K^{\times})$ with N(x, y) > 0. Let $\mathcal{O}_K^{\pm} \subset \mathcal{O}_K$ be where the norm has sign \pm . Note that if $u = \pm (2 + \sqrt{3})^k$ and $x = m + n\sqrt{3}$ if we define

$$\sigma(m+n\sqrt{3}) = (-1)^{m+n}$$

then

$$\sigma(xu) = \sigma(x)$$
$$N_{K/\mathbb{Q}}(v) = N_{K/\mathbb{Q}}(x)$$

the latter because all units in \mathcal{O}_K have norm +1, by their classification. This states that σ and $N_{K/\mathbb{Q}}$ are well-defined independent of any translates by \mathcal{O}_K^{\times} so in fact

$$\sum_{x \in \log^{-1} \mathcal{D}, N(x) > 0} \frac{\sigma(x)}{N(x)} = \sum_{x \in \mathcal{O}_K^+ / \mathcal{O}_K^\times} \frac{\sigma(x)}{N(x)}$$

under the identification $\log^{-1} \mathcal{D} = \mathcal{O}_K - 0/\mathcal{O}_K^{\times}$, and this is simply

$$\sum_{x \in \log^{-1} \mathcal{D}, N(x) > 0} \frac{\sigma(x)}{N(x)} = \sum_{m \ge 2n > 0} \frac{\sigma(m + n\sqrt{3})}{N_{K/\mathbb{Q}}(m + n\sqrt{3})}$$
$$= \sum_{m > 2n > 0} \frac{\sigma(m + n\sqrt{3})}{N_{K/\mathbb{Q}}(m + n\sqrt{3})} + \sum_{n \ge 1} \frac{(-1)^n}{n^2}$$
$$= \sum_{m > 2n > 0} \frac{(-1)^{m+n}}{m^2 - 3n^2} - \frac{\pi^2}{12}$$

because

$$\sum_{n\geq 1} \frac{(-1)^n}{n^2} = \sum_{n\in 2\mathbb{Z}, n\geq 1} \frac{1}{n^2} - \sum_{n\in 2\mathbb{Z}+1, n\geq 1} \frac{1}{n^2}$$
$$= 2\sum_{n\in 2\mathbb{Z}, n\geq 2} \frac{1}{n^2} - \sum_{n\geq 1} \frac{1}{n^2}$$
$$= 2\sum_{k\geq 1} \frac{1}{(2k)^2} - \zeta(2)$$
$$= \zeta(2)/2 - \zeta(2)$$
$$= -\frac{\pi^2}{12}$$

(13.3) So we only need to compute

$$\sum_{X \in \mathcal{O}_K^+ / \mathcal{O}_K^\times} \frac{\sigma(x)}{N(x)}$$

Let $\chi(x) = \operatorname{sign} N_{K/\mathbb{Q}}(x)$ in which case we see that $\chi(xu) = \chi(x)$ for $x \in \mathcal{O}_K - 0$ and $u \in \mathcal{O}_K^{\times}$ from the equality of norms. Then to count only $x \in \mathcal{O}_K^+$ we note that $(1 + \chi(x))/2$ is 1 if $x \in \mathcal{O}_K^+$ and 0 if $x \in \mathcal{O}_K^$ and so

$$\sum_{x \in \mathcal{O}_K^+ / \mathcal{O}_K^\times} \frac{\sigma(x)}{N(x)} = \frac{1}{2} \sum_{x \in \mathcal{O}_K - 0 / \mathcal{O}_K^\times} \frac{\sigma(x)(1 + \chi(x))}{|N_{K/\mathbb{Q}}(x)|}$$

where the absolute value appears because the only terms that show up in the sum are those where the norm is positive.

(13.4) Since σ , $N_{K/\mathbb{Q}}$ and χ do not change upon multiplication by units we can rewrite this as a sum over ideals as the class number of $\mathbb{Q}(\sqrt{3})$ is 1. Indeed

$$\frac{1}{2} \sum_{x \in \mathcal{O}_K - 0/\mathcal{O}_K^{\times}} \frac{\sigma(x)(1 + \chi(x))}{|N_{K/\mathbb{Q}}(x)|} = \frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1 + \chi(I))}{|N_{K/\mathbb{Q}}(I)|}$$
$$= \frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1 + \chi(I))}{||I||}$$

where $\sigma(I), \chi(I)$ and $N_{K/\mathbb{Q}}(I)$ are defined by $\sigma(x), \chi(x)$ and $N_{K/\mathbb{Q}}(x)$ for any generator x of I and $|N_{K/\mathbb{Q}}(I)| = I$.

(13.5) We remark that $\sigma(x) = 1$ if and only if $\varpi = 1 + \sqrt{3} \mid x$. Indeed,

$$\frac{m+n\sqrt{3}}{1+\sqrt{3}} = \frac{3n-m}{2} + \frac{m-n}{2}\sqrt{3}$$

is an algebraic integer if and only if m + n is even, i.e., if $\sigma(m + n\sqrt{3}) = 1$. Thus

$$\begin{split} U(s) &= \sum_{I \neq 0} \frac{\sigma(I)}{||I||^s} \\ &= \sum_{\varpi \mid I} \frac{1}{||I||^s} - \sum_{\varpi \nmid I} \frac{1}{||I||^s} \\ &= \sum_{n \geq 1} \sum_{v_{\varpi}(I) = n} \frac{1}{||I||^s} - \sum_{\varpi \nmid I} \frac{1}{||I||^s} \\ &= \sum_{n \geq 1} \sum_{\varpi \nmid J} \frac{1}{2^{ns} ||J||^2} - \sum_{\varpi \nmid I} \frac{1}{||I||^s} \\ &= \left(-1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots\right) \sum_{\varpi \nmid I} \frac{1}{||I||^s} \\ &= \left(-2 + \frac{1}{1 - 2^{-s}}\right) \prod_{\mathfrak{p} \neq \varpi} \left(1 - \frac{1}{||\mathfrak{p}||^s}\right)^{-1} \\ &= (-1 + 2^{1-s}) \prod_{\mathfrak{p}} \left(1 - \frac{1}{||\mathfrak{p}||^s}\right)^{-1} \\ &= (-1 + 2^{1-s}) \zeta_K(s) \end{split}$$

where in the sum corresponding to $v_{\varpi}(I) = n$ we write $I = \varpi^n J$ with $\varpi \nmid J$. Here the last product is over all prime ideals \mathfrak{p} of \mathcal{O}_K .

Thus

$$\sum_{I \neq 0} \frac{\sigma(I)}{||I||} = U(1)$$

= $\lim_{s \to 1} \frac{-1 + 2^{1-s}}{s-1} \lim_{s \to 1} (s-1)\zeta_K(s)$
= $-\log(2) \frac{2^2 R_K}{2\sqrt{12}}$
= $-\frac{\log(2)\log(2+\sqrt{3})}{\sqrt{3}}$

where the last line is the analytic class number formula.

(13.6) Next we compute

$$V(s) = \sum_{I \neq 0} \frac{\sigma(I)\chi(I)}{||I||^2}$$
$$= \sum_{n \ge 1} \sum_{\varpi \nmid J} \frac{\chi(\varpi^n J)}{2^{ns} ||J||^s} - \sum_{\varpi \nmid I} \frac{\chi(I)}{||I||^s}$$

but now $\chi(\varpi^n J) = \chi(\varpi)^n \chi(J) = (-1)^n \chi(J)$ and so

$$\begin{split} V(s) &= \left(-1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{8^s} \cdots \right) \sum_{\varpi \nmid I} \frac{\chi(I)}{||I||^s} \\ &= \frac{-1 - 2^{1-s}}{1 + 2^{-s}} \prod_{\mathfrak{p} \neq \varpi} \left(1 - \frac{\chi(\mathfrak{p})}{||\mathfrak{p}||^s}\right)^{-1} \\ &= \frac{-1 - 2^{1-s}}{1 + 2^{-s}} (1 + 2^{-s}) \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{||\mathfrak{p}||^s}\right)^{-1} \\ &= (-1 - 2^{1-s}) L(\chi, s) \end{split}$$

because $\chi(\varpi) = -1$ and here we denoted

$$L(\chi,s) = \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{||\mathfrak{p}||^s}\right)^{-1}$$

From the homework

$$L(\chi, s) = L(\chi_4, s) L(\chi_3, s)$$

where $\chi_d(x) = \left(\frac{x}{d}\right)$ and so to compute $V(1) = \sum_{I \neq 0} \frac{\sigma(I)\chi(I)}{||I||}$ we only need to compute the two special values. But characters χ_4 and χ_3 are odd as -1 is not a quadratic residue mod 4 or 3 and so

$$L(\chi_4, 1) = \frac{\pi i \tau(\chi_4) B_{1, \overline{\chi}_4}}{f_{\chi_4}} = \frac{\pi i \cdot 2i \cdot -\frac{1}{2}}{4} = \frac{\pi}{4}$$

and

$$L(\chi_3, 1) = \frac{\pi i \tau(\chi_3) B_{1,\overline{\chi}_3}}{3} = \frac{\pi i \cdot i \sqrt{3} \cdot -\frac{1}{3}}{3} = \frac{\pi}{3\sqrt{3}}$$

and so

$$L(\chi,1) = \frac{\pi^2}{12\sqrt{3}}$$

giving

$$V(1) = -2L(\chi, 1) = -\frac{\pi^2}{6\sqrt{3}}$$

(13.7) Putting everything together we get

$$\frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1 + \chi(I))}{||I||} = \frac{1}{2} \left(-\frac{\log(2)\log(2 + \sqrt{3})}{\sqrt{3}} - \frac{\pi^2}{6\sqrt{3}} \right)$$

and so

$$F(2+\sqrt{3}) - F(2-\sqrt{3}) = -2\sqrt{3} \left(\frac{\pi^2}{12} + \frac{1}{2} \left(-\frac{\log(2)\log(2+\sqrt{3})}{\sqrt{3}} - \frac{\pi^2}{6\sqrt{3}} \right) \right)$$

Together with $F(2 + \sqrt{3}) + F(2 - \sqrt{3}) = (\log(2))^2$ this gives

$$F(2+\sqrt{3}) = \frac{(\log 2)^2}{2} - \frac{\pi^2\sqrt{3}}{12} + \frac{\pi^2}{12} + \frac{\log(2)\log(2+\sqrt{3})}{2} = \frac{\pi^2}{12}(1-\sqrt{3}) + \log(2)\log(1+\sqrt{3})$$

as $2(2 + \sqrt{3}) = (1 + \sqrt{3})^2$.