Introduction to Algebraic Number Theory

Lecture 31

Andrei Jorza

13 A peculiar integral

This section is due to David Speyer.
We will compute

$$
\int_{0}^{1} \frac{\log \left(1+x^{2+\sqrt{3}}\right) d x}{1+x}=\frac{\pi^{2}}{12}(1-\sqrt{3})+\log (2) \log (1+\sqrt{3})
$$

(13.1) Let $F(\alpha)=\int_{0}^{1} \frac{\log \left(1+x^{\alpha}\right) d x}{1+x}$. Using integration by parts get

$$
\begin{aligned}
F(\alpha) & =\int_{0}^{1} \log \left(1+x^{\alpha}\right) d \log (1+x) \\
& =(\log 2)^{2}-F\left(\alpha^{-1}\right)
\end{aligned}
$$

But also

$$
\begin{aligned}
F(\alpha) & =\int_{0}^{1} \sum_{k, n \geq 1} \frac{(-1)^{k-1} x^{k-1}(-1)^{n-1} x^{\alpha n}}{n} \\
& =\sum_{k, n \geq 1} \frac{(-1)^{n+k}}{n(n \alpha+k)}
\end{aligned}
$$

and so

$$
\begin{aligned}
F(\alpha)-F\left(\alpha^{-1}\right) & =\sum_{k, n \geq 1} \frac{(-1)^{n+k}}{n}\left(\frac{1}{n \alpha+k}-\frac{1}{n \alpha^{-1}+k}\right) \\
& =\left(\alpha^{-1}-\alpha\right) \sum_{k, n \geq 1} \frac{(-1)^{n+k}}{n^{2}+\left(\alpha+\alpha^{-1}\right) n k+k^{2}}
\end{aligned}
$$

(13.2) For $\alpha=2+\sqrt{3}$ this gives

$$
F(\alpha)-F\left(\alpha^{-1}\right)=-2 \sqrt{3} \sum_{k, n \geq 1} \frac{(-1)^{n+k}}{n^{2}+4 k n+k^{4}}
$$

which, under the change of variables $m=k+2 n$ can be rewritten as

$$
F(\alpha)-F\left(\alpha^{-1}\right)=-2 \sqrt{3} \sum_{m>2 n>0} \frac{(-1)^{m+n}}{m^{2}-3 n^{2}}
$$

Recall the maps $K^{\times} \xrightarrow{\iota} \mathbb{R}^{2} \xrightarrow{\log } \mathbb{R}^{2} \xrightarrow{\sum} \mathbb{R}$ taking \mathcal{O}_{K}^{\times}to the lattice $\log \iota \mathcal{O}_{K}^{\times}=\left(R_{K},-R_{K}\right) \mathbb{Z} \subset \Delta=$ $(1,-1) \mathbb{R} \subset \mathbb{R}^{2}$ where $R_{K}=\log (2+\sqrt{3})$ is the regulator since $\mathcal{O}_{K}^{\times}= \pm(2+\sqrt{3})^{\mathbb{Z}}$. As in the proof of the

Dirichlet unit theorem the region $\mathcal{D}=\left\{y<x \leq y+2 R_{K}\right\}$ is a fundamental domain of representative for $\mathbb{R}^{2} / \log \iota \mathcal{O}_{K}^{\times}$and the preimage of this under \log gives the region $\left\{(x, y) \in \mathbb{R}^{2}| | y\left|<|x| \leq|y|(2+\sqrt{3})^{2}\right\}\right.$. Writing $(x, y)=\iota(m+n \sqrt{3})$, i.e., $x=m+n \sqrt{3}$ and $y=m-n \sqrt{3}$ the condition $m \geq 2 n>0$ translates into $x y>0$ and $(x, y) \in \log ^{-1} \mathcal{D}$ in other words $(x, y) \in \log ^{-1} \mathcal{D} \cap \iota\left(\mathcal{O}_{K}^{\times}\right)$with $N(x, y)>0$.

Let $\mathcal{O}_{K}^{ \pm} \subset \mathcal{O}_{K}$ be where the norm has sign \pm. Note that if $u= \pm(2+\sqrt{3})^{k}$ and $x=m+n \sqrt{3}$ if we define

$$
\sigma(m+n \sqrt{3})=(-1)^{m+n}
$$

then

$$
\begin{aligned}
\sigma(x u) & =\sigma(x) \\
N_{K / \mathbb{Q}}(v) & =N_{K / \mathbb{Q}}(x)
\end{aligned}
$$

the latter because all units in \mathcal{O}_{K} have norm +1 , by their classification. This states that σ and $N_{K / \mathbb{Q}}$ are well-defined independent of any translates by \mathcal{O}_{K}^{\times}so in fact

$$
\sum_{x \in \log ^{-1} \mathcal{D}, N(x)>0} \frac{\sigma(x)}{N(x)}=\sum_{x \in \mathcal{O}_{K}^{+} / \mathcal{O}_{K}^{\times}} \frac{\sigma(x)}{N(x)}
$$

under the identification $\log ^{-1} \mathcal{D}=\mathcal{O}_{K}-0 / \mathcal{O}_{K}^{\times}$, and this is simply

$$
\begin{aligned}
\sum_{x \in \log ^{-1} \mathcal{D}, N(x)>0} \frac{\sigma(x)}{N(x)} & =\sum_{m \geq 2 n>0} \frac{\sigma(m+n \sqrt{3})}{N_{K / \mathbb{Q}}(m+n \sqrt{3})} \\
& =\sum_{m>2 n>0} \frac{\sigma(m+n \sqrt{3})}{N_{K / \mathbb{Q}}(m+n \sqrt{3})}+\sum_{n \geq 1} \frac{(-1)^{n}}{n^{2}} \\
& =\sum_{m>2 n>0} \frac{\left.(-1)^{m+n}\right)}{m^{2}-3 n^{2}}-\frac{\pi^{2}}{12}
\end{aligned}
$$

because

$$
\begin{aligned}
\sum_{n \geq 1} \frac{(-1)^{n}}{n^{2}} & =\sum_{n \in 2 \mathbb{Z}, n \geq 1} \frac{1}{n^{2}}-\sum_{n \in 2 \mathbb{Z}+1, n \geq 1} \frac{1}{n^{2}} \\
& =2 \sum_{n \in 2 \mathbb{Z}, n \geq 2} \frac{1}{n^{2}}-\sum_{n \geq 1} \frac{1}{n^{2}} \\
& =2 \sum_{k \geq 1} \frac{1}{(2 k)^{2}}-\zeta(2) \\
& =\zeta(2) / 2-\zeta(2) \\
& =-\frac{\pi^{2}}{12}
\end{aligned}
$$

(13.3) So we only need to compute

$$
\sum_{x \in \mathcal{O}_{K}^{+} / \mathcal{O}_{K}^{\times}} \frac{\sigma(x)}{N(x)}
$$

Let $\chi(x)=\operatorname{sign} N_{K / \mathbb{Q}}(x)$ in which case we see that $\chi(x u)=\chi(x)$ for $x \in \mathcal{O}_{K}-0$ and $u \in \mathcal{O}_{K}^{\times}$from the equality of norms. Then to count only $x \in \mathcal{O}_{K}^{+}$we note that $(1+\chi(x)) / 2$ is 1 if $x \in \mathcal{O}_{K}^{+}$and 0 if $x \in \mathcal{O}_{K}^{-}$ and so

$$
\sum_{x \in \mathcal{O}_{K}^{+} / \mathcal{O}_{K}^{\times}} \frac{\sigma(x)}{N(x)}=\frac{1}{2} \sum_{x \in \mathcal{O}_{K}-0 / \mathcal{O}_{K}^{\times}} \frac{\sigma(x)(1+\chi(x))}{\left|N_{K / \mathbb{Q}}(x)\right|}
$$

where the absolute value appears because the only terms that show up in the sum are those where the norm is positive.
(13.4) Since $\sigma, N_{K / \mathbb{Q}}$ and χ do not change upon multiplication by units we can rewrite this as a sum over ideals as the class number of $\mathbb{Q}(\sqrt{3})$ is 1 . Indeed

$$
\begin{aligned}
\frac{1}{2} \sum_{x \in \mathcal{O}_{K}-0 / \mathcal{O}_{K}^{\times}} \frac{\sigma(x)(1+\chi(x))}{\left|N_{K / \mathbb{Q}}(x)\right|} & =\frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1+\chi(I))}{\left|N_{K / \mathbb{Q}}(I)\right|} \\
& =\frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1+\chi(I))}{\|I\|}
\end{aligned}
$$

where $\sigma(I), \chi(I)$ and $N_{K / \mathbb{Q}}(I)$ are defined by $\sigma(x), \chi(x)$ and $N_{K / \mathbb{Q}}(x)$ for any generator x of I and $\left|N_{K / \mathbb{Q}}(I)\right|=$ I.
(13.5) We remark that $\sigma(x)=1$ if and only if $\varpi=1+\sqrt{3} \mid x$. Indeed,

$$
\frac{m+n \sqrt{3}}{1+\sqrt{3}}=\frac{3 n-m}{2}+\frac{m-n}{2} \sqrt{3}
$$

is an algebraic integer if and only if $m+n$ is even, i.e., if $\sigma(m+n \sqrt{3})=1$. Thus

$$
\begin{aligned}
U(s) & =\sum_{I \neq 0} \frac{\sigma(I)}{\|I\|^{s}} \\
& =\sum_{\varpi \mid I} \frac{1}{\|I\|^{s}}-\sum_{\varpi \nmid I} \frac{1}{\|I\|^{s}} \\
& =\sum_{n \geq 1} \sum_{v_{\varpi}(I)=n} \frac{1}{\|I\|^{s}}-\sum_{\varpi \nmid I} \frac{1}{\|I\|^{s}} \\
& =\sum_{n \geq 1} \sum_{\varpi \nmid J} \frac{1}{2^{n s}\|J\|^{2}}-\sum_{\varpi \nmid I} \frac{1}{\|I\|^{s}} \\
& =\left(-1+\frac{1}{2^{s}}+\frac{1}{4^{s}}+\cdots\right) \sum_{\varpi \nmid I} \frac{1}{\|I\|^{s}} \\
& =\left(-2+\frac{1}{1-2^{-s}}\right) \prod_{\mathfrak{p} \neq \varpi}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
& =\left(-1+2^{1-s}\right) \prod_{\mathfrak{p}}\left(1-\frac{1}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
& =\left(-1+2^{1-s}\right) \zeta_{K}(s)
\end{aligned}
$$

where in the sum corresponding to $v_{\varpi}(I)=n$ we write $I=\varpi^{n} J$ with $\varpi \nmid J$. Here the last product is over all prime ideals \mathfrak{p} of \mathcal{O}_{K}.

Thus

$$
\begin{aligned}
\sum_{I \neq 0} \frac{\sigma(I)}{\|I\|} & =U(1) \\
& =\lim _{s \rightarrow 1} \frac{-1+2^{1-s}}{s-1} \lim _{s \rightarrow 1}(s-1) \zeta_{K}(s) \\
& =-\log (2) \frac{2^{2} R_{K}}{2 \sqrt{12}} \\
& =-\frac{\log (2) \log (2+\sqrt{3})}{\sqrt{3}}
\end{aligned}
$$

where the last line is the analytic class number formula.
(13.6) Next we compute

$$
\begin{aligned}
V(s) & =\sum_{I \neq 0} \frac{\sigma(I) \chi(I)}{\|I\|^{2}} \\
& =\sum_{n \geq 1} \sum_{\varpi \nmid J} \frac{\chi\left(\varpi^{n} J\right)}{2^{n s}\|J\|^{s}}-\sum_{\varpi \nmid I} \frac{\chi(I)}{\|I\|^{s}}
\end{aligned}
$$

but now $\chi\left(\varpi^{n} J\right)=\chi(\varpi)^{n} \chi(J)=(-1)^{n} \chi(J)$ and so

$$
\begin{aligned}
V(s) & =\left(-1-\frac{1}{2^{s}}+\frac{1}{4^{s}}-\frac{1}{8^{s}} \cdots\right) \sum_{\varpi \nmid I} \frac{\chi(I)}{\|I\|^{s}} \\
& =\frac{-1-2^{1-s}}{1+2^{-s}} \prod_{\mathfrak{p} \neq \varpi}\left(1-\frac{\chi(\mathfrak{p})}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
& =\frac{-1-2^{1-s}}{1+2^{-s}}\left(1+2^{-s}\right) \prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{\|\mathfrak{p}\|^{s}}\right)^{-1} \\
& =\left(-1-2^{1-s}\right) L(\chi, s)
\end{aligned}
$$

because $\chi(\varpi)=-1$ and here we denoted

$$
L(\chi, s)=\prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{\|\mathfrak{p}\|^{s}}\right)^{-1}
$$

From the homework

$$
L(\chi, s)=L\left(\chi_{4}, s\right) L\left(\chi_{3}, s\right)
$$

where $\chi_{d}(x)=\left(\frac{x}{d}\right)$ and so to compute $V(1)=\sum_{I \neq 0} \frac{\sigma(I) \chi(I)}{\|I\|}$ we only need to compute the two special values. But characters χ_{4} and χ_{3} are odd as -1 is not a quadratic residue $\bmod 4$ or 3 and so

$$
L\left(\chi_{4}, 1\right)=\frac{\pi i \tau\left(\chi_{4}\right) B_{1, \bar{\chi}_{4}}}{f_{\chi_{4}}}=\frac{\pi i \cdot 2 i \cdot-\frac{1}{2}}{4}=\frac{\pi}{4}
$$

and

$$
L\left(\chi_{3}, 1\right)=\frac{\pi i \tau\left(\chi_{3}\right) B_{1, \bar{\chi}_{3}}}{3}=\frac{\pi i \cdot i \sqrt{3} \cdot-\frac{1}{3}}{3}=\frac{\pi}{3 \sqrt{3}}
$$

and so

$$
L(\chi, 1)=\frac{\pi^{2}}{12 \sqrt{3}}
$$

giving

$$
V(1)=-2 L(\chi, 1)=-\frac{\pi^{2}}{6 \sqrt{3}}
$$

(13.7) Putting everything together we get

$$
\frac{1}{2} \sum_{I \neq 0} \frac{\sigma(I)(1+\chi(I))}{\|I\|}=\frac{1}{2}\left(-\frac{\log (2) \log (2+\sqrt{3})}{\sqrt{3}}-\frac{\pi^{2}}{6 \sqrt{3}}\right)
$$

and so

$$
F(2+\sqrt{3})-F(2-\sqrt{3})=-2 \sqrt{3}\left(\frac{\pi^{2}}{12}+\frac{1}{2}\left(-\frac{\log (2) \log (2+\sqrt{3})}{\sqrt{3}}-\frac{\pi^{2}}{6 \sqrt{3}}\right)\right)
$$

Together with $F(2+\sqrt{3})+F(2-\sqrt{3})=(\log (2))^{2}$ this gives

$$
F(2+\sqrt{3})=\frac{(\log 2)^{2}}{2}-\frac{\pi^{2} \sqrt{3}}{12}+\frac{\pi^{2}}{12}+\frac{\log (2) \log (2+\sqrt{3})}{2}=\frac{\pi^{2}}{12}(1-\sqrt{3})+\log (2) \log (1+\sqrt{3})
$$

as $2(2+\sqrt{3})=(1+\sqrt{3})^{2}$.

