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13 A peculiar integral

This section is due to David Speyer.
We will compute
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(13.2) For a = 2 + /3 this gives
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which, under the change of variables m = k + 2n can be rewritten as
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Recall the maps K* = R? log g2 X R taking Oj to the lattice logtO) =
(1,-1)R C R? where Ry = log(2 + v/3) is the regulator since O} = £(2 + v/3)Z.
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As in the proof of the



Dirichlet unit theorem the region D = {y < ¢ < y + 2Rk} is a fundamental domain of representative for
R?/logtOF and the preimage of this under log gives the region {(z,y) € R?||y| < |z| < |y|(2 + V3)?}.
Writing (z,y) = ¢(m + n\/g), ie., z =m+nyv3 and y = m — ny/3 the condition m > 2n > 0 translates into
xy > 0 and (z,y) € log~' D in other words (,y) € log~! DN (OF) with N(z,y) > 0.

Let Oli( C Ok be where the norm has sign 4. Note that if u = +(2++/3)* and = = m +n/3 if we define
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the latter because all units in Ok have norm +1, by their classification. This states that o and Nk ,q are
well-defined independent of any translates by O so in fact
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under the identification log™' D = O — 0/Oj, and this is simply
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(13.3) So we only need to compute

Let x(x) = sign Ng,g() in which case we see that x(zu) = x(z) for x € Og — 0 and u € Oy from the
equality of norms. Then to count only z € O} we note that (1 + x())/2is 1 if z € O} and 0 if x € O
and so
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where the absolute value appears because the only terms that show up in the sum are those where the norm
is positive.

(13.4) Since o, Nk /g and x do not change upon multiplication by units we can rewrite this as a sum over
ideals as the class number of Q(+/3) is 1. Indeed
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where o(I), x(I) and Nk q(I) are defined by o(x), x(x) and Ng q(z) for any generator x of I and [Ny q(I)| =
I

(13.5) We remark that o(x) = 1 if and only if @ = 1+ /3 | 2. Indeed,
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is an algebraic integer if and only if m + n is even, i.e., if o(m + nv/3) = 1. Thus
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where in the sum corresponding to v, (I) = n we write I = w™J with w { J. Here the last product is over

all prime ideals p of Ok.



Thus
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where the last line is the analytic class number formula.

(13.6) Next we compute

Vi = 3 SN

P ||I|\2
_ZZ _ x(1)
2m|u||9 ZIITP
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because x(w) = —1 and here we denoted
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From the homework
L(x,s) = L (xa,5) L (x3, )

where yq(z) = (%) and so to compute V(1) =3, £0 Il);ﬁ(l) we only need to compute the two special values.

But characters x4 and x3 are odd as —1 is not a quadratic residue mod 4 or 3 and so
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giving
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(13.7) Putting everything together we get
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and so
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Together with F(2 ++/3) + F(2 — v/3) = (log(2))? this gives
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as 2(2 + \/3) =(1+ V3)2.
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