Introduction to Algebraic Number Theory Lecture 32

Andrei Jorza Typeset by Matt Cole

13 Geometry

So far we have considered number fields K/\mathbb{Q} and their rings of integers \mathcal{O}_K . We have seen that \mathcal{O}_K is a Dedekind domain, and we've explored the unique factorization of ideals, ramification theory, and counting prime ideals in \mathcal{O}_K . But we could instead consider $K/\operatorname{Frac} \mathbb{F}_q[x]$, where $q = p^r$, p prime. K is significant because the set of functions on smooth projective curves over \mathbb{F}_q embeds into K. Crucially, we can define a ring of integers $\mathcal{O} \subset K$ which is a Dedekind domain.

In the next nine lectures, we'll cover smooth and projective curves, their function fields, and elliptic curves.

(13.1) Varieties.

Let K be a field.

Definition 1. The affine space of dimension n over K is $\mathbb{A}_k^n = \{(x_1, \ldots, x_n) \in K^n\}$.

The projective space of dimension n over K is $\mathbb{P}^n_k = \{(x_0 : \ldots : x_n) \in K^{n+1} \setminus \{0 : \ldots : 0\}\} / K^{\times}$.

Definition 2. An *affine variety* is the zero locus V(I) of a prime ideal $I \subset K[x_1, \ldots, x_n]$.

A projective variety is the zero locus V(I) of a prime ideal $I \subset K[x_0, \ldots, x_n]$ generated by a homogeneous polynomial.

Definition 3. Let $I = (f_1, \ldots, f_n) \subset K[x_0, \ldots, x_n]$. $p \in V(I)$ is smooth if the Jacobian $(\frac{\partial f_i}{\partial x_j}(p))$ has rank equal to dim $V := \text{trans} \deg K(V)/K$, where $K(V) := K[x_1, \ldots, x_n]/I$ is the field of functions on V.

Definition 4. $m_p := \{ f \in K(V) | f(p) = 0 \}$, an ideal. $K(V)_p := \{ \frac{f}{g} | f, g \in K(V), g(p) \neq 0 \}$.

Proposition 5. If V is smooth at p, then $K(V)_p$ has m_p as its unique maximal ideal, and every ideal is m_p^n for some n.

Example 6. Let $V_1 = (y^2 = x^3 + x)$, $V_2 = (y^2 = x^3 + x^2)$, and p = (0, 0). We compute

$$\begin{split} K(V_1) &= K[x,y]/(y^2 - x^3 - x);\\ m_p &= \{f(x,y) \mid f \text{ has no constant term}\} = (x,y);\\ m_p^2 &= (x,y)(x,y) = (x^2, xy, y^2) = (x^2, xy, x^3 + x) = (x^2, xy, x) = (x);\\ m_p^{n+1} &= (x^n). \end{split}$$

$$K(V_2) = K[x, y]/(y^2 - x^3 - x^2);$$

$$m_p = (x, y);$$

$$m_p^2 = (x^2, xy, x^3 + x^2) = (x^2, xy).$$

So in the case of V_2 , $m_p \supsetneq (x) \supsetneq m_p^2$.

Definition 7. Let V be smooth at p and $f \in K(V)$. We define $\operatorname{ord}_p(f) = n$ if $f \in m_p^n \setminus m_p^{n+1}$.

Example 8. If V_1 is as in the example above, $x \in K(V_1)$ has $\operatorname{ord}_p(x) = 2$, and $y \in K(V_1)$ has $\operatorname{ord}_p(y) = 1$.

Definition 9. Let V be smooth at p. $f \in K(V)_p$ is a uniformizer if $\operatorname{ord}_p(f) = 1$.

Definition 10. A curve C is a projective variety of dimension 1.

Example 11. The variety given by $y^2 z = x^3 + xz^2$ is a curve.

Theorem 12. Let C be a curve smooth at p and let t be a uniformizer at p. Then K(C)/K(t) is a finite separable extension.

Example 13. Let C: $y^2 = x^3 + x$ with t = y. Then K(C)/K(t) is a cubic extension.

Think of t as the variable from the Implicit Function Theorem. Also, note that K(t) is like \mathbb{Q} , and K(C) is like a number field.

(13.2) Maps between Varieties

Let C_1, C_2 be smooth projective curves.

Definition 14. A morphism $f : C_1 \to C_2$ is a map $f = (f_1, \ldots, f_m), f_i \in K(C_1)$, s.t. $\forall p \in C_1$ we get $f(p) \in C_2$ well-defined.

Example 15. The map

$$(y^2 z = x^3 + xz^2) \to \mathbb{P}^1$$
$$(x, y, z) \mapsto (y, z)$$

is a morphism.

Theorem 16. Let $f : C_1 \to C_2$ be a morphism on smooth projective curves C_1, C_2 . Then f is either constant or surjective.

Definition 17. Let $f: C_1 \to C_2$ be a morphism. If f constant, define deg f = 0. If f surjective, we have $f^*: K(C_2) \to K(C_1)$ given by $f^*h(p) = h(f(p)) \forall p \in C_1, h \in K(C_2)$. f^* is injective, so we can say deg $f := [K(C_1): f^*K(C_2)]$.

Example 18. The morphism

$$(y^2 = x^3 + x) \to \mathbb{P}^1$$
$$(x, y) \mapsto (y)$$

has $\deg(y) = 3$.

Fact: deg f is the number of points of C_1 mapping to a generic point of C_2 .