Introduction to Algebraic Number Theory Lecture 32

Andrei Jorza
Typeset by Matt Cole

13 Geometry

So far we have considered number fields K / \mathbb{Q} and their rings of integers \mathcal{O}_{K}. We have seen that \mathcal{O}_{K} is a Dedekind domain, and we've explored the unique factorization of ideals, ramification theory, and counting prime ideals in \mathcal{O}_{K}. But we could instead consider $K / \operatorname{Frac} \mathbb{F}_{q}[x]$, where $q=p^{r}, p$ prime. K is significant because the set of functions on smooth projective curves over \mathbb{F}_{q} embeds into K. Crucially, we can define a ring of integers $\mathcal{O} \subset K$ which is a Dedekind domain.

In the next nine lectures, we'll cover smooth and projective curves, their function fields, and elliptic curves.
(13.1) Varieties.

Let K be a field.
Definition 1. The affine space of dimension n over K is $\mathbb{A}_{k}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\right.$ K^{n} \}.
The projective space of dimension n over K is $\mathbb{P}_{k}^{n}=\left\{\left(x_{0}: \ldots: x_{n}\right) \in K^{n+1} \backslash\{0\right.$: $\ldots: 0\}\} / K^{\times}$.

Definition 2. An affine variety is the zero locus $V(I)$ of a prime ideal $I \subset$ $K\left[x_{1}, \ldots, x_{n}\right]$.
A projective variety is the zero locus $V(I)$ of a prime ideal $I \subset K\left[x_{0}, \ldots, x_{n}\right]$ generated by a homogeneous polynomial.

Definition 3. Let $I=\left(f_{1}, \ldots, f_{n}\right) \subset K\left[x_{0}, \ldots, x_{n}\right] . p \in V(I)$ is smooth if the Jacobian $\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)$ has rank equal to $\operatorname{dim} V:=\operatorname{trans} \operatorname{deg} K(V) / K$, where $K(V):=K\left[x_{1}, \ldots, x_{n}\right] / I$ is the field of functions on V.
Definition 4. $m_{p}:=\{f \in K(V) \mid f(p)=0\}$, an ideal. $K(V)_{p}:=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in\right.$ $K(V), g(p) \neq 0\}$.

Proposition 5. If V is smooth at p, then $K(V)_{p}$ has m_{p} as its unique maximal ideal, and every ideal is m_{p}^{n} for some n.

Example 6. Let $V_{1}=\left(y^{2}=x^{3}+x\right), V_{2}=\left(y^{2}=x^{3}+x^{2}\right)$, and $p=(0,0)$. We compute

$$
\begin{aligned}
K\left(V_{1}\right) & =K[x, y] /\left(y^{2}-x^{3}-x\right) \\
m_{p} & =\{f(x, y) \mid f \text { has no constant term }\}=(x, y) \\
m_{p}^{2} & =(x, y)(x, y)=\left(x^{2}, x y, y^{2}\right)=\left(x^{2}, x y, x^{3}+x\right)=\left(x^{2}, x y, x\right)=(x) ; \\
m_{p}^{n+1} & =\left(x^{n}\right) \\
K\left(V_{2}\right) & =K[x, y] /\left(y^{2}-x^{3}-x^{2}\right) \\
m_{p} & =(x, y) \\
m_{p}^{2} & =\left(x^{2}, x y, x^{3}+x^{2}\right)=\left(x^{2}, x y\right) .
\end{aligned}
$$

So in the case of $V_{2}, m_{p} \supsetneqq(x) \supsetneqq m_{p}^{2}$.
Definition 7. Let V be smooth at p and $f \in K(V)$. We define $\operatorname{ord}_{p}(f)=n$ if $f \in m_{p}^{n} \backslash m_{p}^{n+1}$.

Example 8. If V_{1} is as in the example above, $x \in K\left(V_{1}\right)$ has $\operatorname{ord}_{p}(x)=2$, and $y \in K\left(V_{1}\right)$ has $\operatorname{ord}_{p}(y)=1$.

Definition 9. Let V be smooth at $p . f \in K(V)_{p}$ is a uniformizer if $\operatorname{ord}_{p}(f)=1$.
Definition 10. A curve C is a projective variety of dimension 1.
Example 11. The variety given by $y^{2} z=x^{3}+x z^{2}$ is a curve.
Theorem 12. Let C be a curve smooth at p and let t be a uniformizer at p. Then $K(C) / K(t)$ is a finite separable extension.

Example 13. Let $C: y^{2}=x^{3}+x$ with $t=y$. Then $K(C) / K(t)$ is a cubic extension.

Think of t as the variable from the Implicit Function Theorem. Also, note that $K(t)$ is like \mathbb{Q}, and $K(C)$ is like a number field.

(13.2) Maps between Varieties

Let C_{1}, C_{2} be smooth projective curves.
Definition 14. A morphism $f: C_{1} \rightarrow C_{2}$ is a map $f=\left(f_{1}, \ldots, f_{m}\right), f_{i} \in$ $K\left(C_{1}\right)$, s.t. $\forall p \in C_{1}$ we get $f(p) \in C_{2}$ well-defined.

Example 15. The map

$$
\begin{aligned}
\left(y^{2} z=x^{3}+x z^{2}\right) & \rightarrow \mathbb{P}^{1} \\
(x, y, z) & \mapsto(y, z)
\end{aligned}
$$

is a morphism.

Theorem 16. Let $f: C_{1} \rightarrow C_{2}$ be a morphism on smooth projective curves C_{1}, C_{2}. Then f is either constant or surjective.

Definition 17. Let $f: C_{1} \rightarrow C_{2}$ be a morphism. If f constant, define $\operatorname{deg} f=0$. If f surjective, we have $f^{*}: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)$ given by $f^{*} h(p)=h(f(p)) \forall p \in$ $C_{1}, h \in K\left(C_{2}\right) . f^{*}$ is injective, so we can say $\operatorname{deg} f:=\left[K\left(C_{1}\right): f^{*} K\left(C_{2}\right)\right]$.

Example 18. The morphism

$$
\begin{aligned}
\left(y^{2}=x^{3}+x\right) & \rightarrow \mathbb{P}^{1} \\
(x, y) & \mapsto(y)
\end{aligned}
$$

has $\operatorname{deg}(y)=3$.
Fact: $\operatorname{deg} f$ is the number of points of C_{1} mapping to a generic point of C_{2}.

