ALGEBRAIC NUMBER THEORY LECTURE 33

NOTES BY NATHAN VANDERWERF

Recall 0

Let X be a projective variety. Let $I \subset K[x_0, \dots, x_n]$ be a prime ideal generated by a homogeneous ideal. Then $K[X] = k[x_0, \dots, x_n]/I$ is an integral domain, with K(X) it's fraction field, and $\dim(X) = \operatorname{trdeg} K(X)/K$, and recall that X is smooth at P if the Jacobian has rank equal to $\dim X$. Think of a point of X over an algebraic extension as a $\operatorname{Gal}(\overline{K}/L)$ orbit of points over \overline{K} . Last time we saw that for a curve C, if P is smooth then $K(C)_p = \{\frac{f}{g} \in K(C), g(P) \neq 0\}$ is a division ring. $\mathfrak{m}_P = \{ \frac{f}{a} \in K(C)_P | f(P) = 0 \}$ is its unique maximal ideal, and all ideal are of the form m_P^{n} for n > 0. For $f \in K(C)_p$ or $d_P(f)$ is the largest n such that $f \in m_p^n$. is a uniformizer if $ord_P(f) = 1$. Think of $ord_P(f)$ as the order of the zero at P if n is positive, and the order of the pole is if n is negative.

Ramification

Let $\psi: C_1 \to C_2$ be a morphism between two smooth projective curves C_1, C_2 . Recall this induces a map $\psi * : K(C_2 \to C_1)$ and $deg\psi = [K(C_1) : \psi^*K(C_2)].$ **Definition 1** Let $Q = \psi(P)$ and define $e_{P/Q,\psi} = ord_P(\psi^*\mathfrak{t}_Q)$, where \mathfrak{t}_Q is the uniformizer.

Example 2 Let

$$\psi: \mathbb{P}^1 \to \mathbb{P}^1$$
$$(x:y) \to (x^3(x-y)^2: y^5)$$

Here deg $\psi = 5$. Let little $x \ x = \frac{x}{y}, \ y \neq 0$. Then $\psi(x) = x^3(x-1)^2$, and with $\infty = (1:0), \ \psi(\infty) = \infty$. The uniformizer at $Q = \lambda$ is $x - \lambda = t_Q$. $\psi^*(t_Q) = \psi(x) - \psi(x) = \psi(x) + \psi(x) + \psi(x) + \psi(x) = \psi(x) + \psi(x) + \psi(x) + \psi(x) + \psi(x) + \psi(x) + \psi(x) = \psi(x) + \psi($ $\lambda = x^3(x-1)^2 - \lambda$, with order of vanishing 2. We have that $P_{\lambda}(x) = x^3(x-1)^2 - \lambda$. $P'_{\lambda}(x) = x^2(x-1)(5x-3)$. They are both zero if either i. x = 0 and $\lambda = 0$, and $e_{0|0,\psi} = 3$, ii. x = 1 $\lambda = 0$, $e_{1|0,\psi} = 2$, iii. x = 3/5, $\lambda = \frac{3^2 2^2}{5^5}$, $e_{3|5,\psi} = 2$. $e_{\infty|\infty} = 5$. These are all P/Q where $e_{P/Q,\psi} > 1$, i.e. P/Q ramifies.

- Proposition 3 a. $\sum_{P \in \psi^{-1}} e_{P/Q,\psi} = \deg \psi.$
- b. Almost all P/Q are unramified.
- c. $e_{P/R} = e_{P/Q} e_{P/R}$.

Suppose a field K of characteristic p is perfect, i.e. $\phi(x) = x^p$ is surjective onto K. This gives a map of curves: $\phi: C \to C^{(p)}$, where C = vanishing of I = $(f_1(x_i), \cdots, f_n(x_i))$ and $C^{(p)} = \text{vanishing of } I^{(p)} = (f_i^{(p)}), \ f = \sum a_I x^I, \ f^{(p)} =$

 $\sum_{i=1}^{n} a_I \phi(x^I). \text{ (eg) } C = \text{the line } x + 26 = 3z \text{ in } \mathbb{P}^2. \text{ Then } C^{(p)} = \text{the line } x^p + 2y^p = 3z^p \subset \mathbb{P}^2 \text{ and } \phi(x_0 : \cdots : x_n) = (x_0^p, \cdots, x_n^p). \text{ If } f(x) = 0, \text{ then it is easy to check that } f^{(p)}(\phi(x)) = 0. f^p(\phi(x)) = \sum_{i=1}^{n} a_I^p x^{pI} = (\sum_{i=1}^{n} a_I x^I)^p = 0. \text{ so } \phi: C \to C^{(p)} \text{ is a morphism.}$ **Proposition 4**

(a.) ϕ has deg p

(b.) ϕ is purely inseparable, i.e. $K(C)/K(C^{(p)})$ is purely inseparable of deg p. **Proposition 5**

(1) If $a \in K(C) - K$, then K(C)/K(a) is finite.

(2) If $a \notin K(C^{(p)})$, then K(C)/K(a) is separable.

(3) If $\mathfrak{t} =$ uniformizer at a smooth point $K(C)/K(\mathfrak{t})$ is finite separable.

Proof (1) Use what we learned from last time for $K(C)/K(\mathfrak{t})$, t uniformizer.

a. Since it is a finite extension, $K(a, \mathfrak{t})/K(\mathfrak{t})$ is finite. There exists a $A_k(t) \in K(\mathfrak{t})$ such that $\sum_{k=0}^{\infty} A_k(t)a^k = 0$. Reshuffle, and get that \mathfrak{t} satisfies a polynomial K(a). so k(t, a)/k(a) is finite.

Theorem 6

(1) Frac($\mathcal{O}_{K(C),S}$) = K(C)(2) $\mathcal{O}_{K(C),S}$ = Dedekind Domain $\mathcal{O}_{K(C),S}$ may just be K. e.g. $\mathcal{O}_{K(\mathbb{P}^1),\phi} = K$ finite field. Application 7

 $P(x), Q(x) \in \mathbb{F}_q[x]$ co-prime polynomial irreducible $f \cong PmodQ$.

$$\delta(f(x) \in \mathbb{F}_q[x]) = \frac{1}{\#(\mathbb{F}_q[x]/Q(x))^x}$$