ALGEBRAIC NUMBER THEORY LECTURE 33

NOTES BY NATHAN VANDERWERF

Recall 0

Let X be a projective variety. Let $I \subset K\left[x_{0}, \cdots, x_{n}\right]$ be a prime ideal generated by a homogeneous ideal. Then $K[X]=k\left[x_{0}, \cdots, x_{n}\right] / I$ is an integral domain, with $K(X)$ it's fraction field, and $\operatorname{dim}(X)=\operatorname{trdeg} K(X) / K$, and recall that X is smooth at P if the Jacobian has rank equal to $\operatorname{dim} X$. Think of a point of X over an algebraic extension as a $\operatorname{Gal}(\bar{K} / L)$ orbit of points over \bar{K}. Last time we saw that for a curve C, if P is smooth then $K(C)_{p}=\left\{\frac{f}{g} \in K(C), g(P) \neq 0\right\}$ is a division ring. $\mathfrak{m}_{P}=\left\{\left.\frac{f}{g} \in K(C)_{P} \right\rvert\, f(P)=0\right\}$ is its unique maximal ideal, and all ideal are of the form m_{P}^{n} for $n>0$. For $f \in K(C)_{p} \operatorname{ord}_{P}(f)$ is the largest n such that $f \in m_{p}^{n}$. f is a uniformizer if $\operatorname{ord}_{P}(f)=1$. Think of $\operatorname{ord}_{P}(f)$ as the order of the zero at P if n is positive, and the order of the pole is if n is negative.

Ramification

Let $\psi: C_{1} \rightarrow C_{2}$ be a morphism between twp smooth projective curves C_{1}, C_{2}. Recall this induces a map $\psi *: K\left(C_{2} \rightarrow C_{1}\right)$ and $\operatorname{deg} \psi=\left[K\left(C_{1}\right): \psi^{*} K\left(C_{2}\right)\right]$.
Definition 1 Let $Q=\psi(P)$ and define $e_{P / Q, \psi}=\operatorname{ord}_{P}\left(\psi^{*} \mathfrak{t}_{Q}\right)$, where \mathfrak{t}_{Q} is the uniformizer.
Example 2 Let

$$
\begin{aligned}
& \psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \\
& (x: y) \rightarrow\left(x^{3}(x-y)^{2}: y^{5}\right)
\end{aligned}
$$

Here $\operatorname{deg} \psi=5$. Let little $x x=\frac{x}{y}, y \neq 0$. Then $\psi(x)=x^{3}(x-1)^{2}$, and with $\infty=(1: 0), \psi(\infty)=\infty$. The uniformizer at $Q=\lambda$ is $x-\lambda=t_{Q} . \psi^{*}\left(t_{Q}\right)=\psi(x)-$ $\lambda=x^{3}(x-1)^{2}-\lambda$, with order of vanishing 2 . We have that $P_{\lambda}(x)=x^{3}(x-1)^{2}-\lambda$. $P_{\lambda}^{\prime}(x)=x^{2}(x-1)(5 x-3)$. They are both zero if either i. $x=0$ and $\lambda=0$, and $e_{0 \mid 0, \psi}=3$, ii. $x=1 \lambda=0, e_{1 \mid 0, \psi}=2$, iii. $x=3 / 5, \lambda=\frac{3^{2} 2^{2}}{5^{5}}, e_{3 \mid 5, \psi}=2 . e_{\infty \mid \infty}=5$. These are all P / Q where $e_{P / Q, \psi}>1$, i.e. P / Q ramifies.

Proposition 3

a. $\sum_{P \in \psi^{-1}} e_{P / Q, \psi}=\operatorname{deg} \psi$.
b. Almost all P / Q are unramified.
c. $e_{P / R}=e_{P / Q} e_{P / R}$.

Suppose a field K of characteristic p is perfect, i.e. $\phi(x)=x^{p}$ is surjective onto K. This gives a map of curves: $\phi: C \rightarrow C^{(p)}$, where $C=$ vanishing of $I=$ $\left(f_{1}\left(x_{i}\right), \cdots, f_{n}\left(x_{i}\right)\right.$. and $C^{(p)}=$ vanishing of $I^{(p)}=\left(f_{i}^{(p)}\right), f=\sum a_{I} x^{I}, f^{(p)}=$
$\sum a_{I} \phi\left(x^{I}\right) .(\mathrm{eg}) C=$ the line $x+26=3 z$ in \mathbb{P}^{2}. Then $C^{(p)}=$ the line $x^{p}+2 y^{p}=$ $3 z^{p} \subset \mathbb{P}^{2}$ and $\phi\left(x_{0}: \cdots: x_{n}\right)=\left(x_{0}^{p}, \cdots, x_{n}^{p}\right)$. If $f(x)=0$, then it is easy to check that $f^{(p)}(\phi(x))=0$. $f^{p}(\phi(x))=\sum a_{I}^{p} x^{p I}=\left(\sum a_{I} x^{I}\right)^{p}=0$. so $\phi: C \rightarrow C^{(p)}$ is a morphism.

Proposition 4

(a.) ϕ has $\operatorname{deg} p$
(b.) ϕ is purely inseparable, ie. $K(C) / K\left(C^{(p)}\right)$ is purely inseparable of deg p.

Proposition 5
(1) If $a \in K(C)-K$, then $K(C) / K(a)$ is finite.
(2) If $a \notin K\left(C^{(p)}\right)$, then $K(C) / K(a)$ is separable.
(3) If $\mathfrak{t}=$ uniformizer at a smooth point $K(C) / K(\mathfrak{t})$ is finite separable.

Proof (1) Use what we learned from last time for $K(C) / K(\mathfrak{t}), t$ uniformizer.
a. Since it is a finite extension, $K(a, \mathfrak{t}) / K(\mathfrak{t})$ is finite. There exists a $A_{k}(t) \in K(\mathfrak{t})$ such that $\sum A_{k}(t) a^{k}=0$. Reshuffle, and get that \mathfrak{t} satisfies a polynomial $K(a)$. so $k(t, a) / k(a)$ is finite.
Theorem 6
(1) $\operatorname{Frac}\left(\mathcal{O}_{K(C), S}\right)=K(C)$
(2) $\mathcal{O}_{K(C), S}=$ Dedekind Domain
$\mathcal{O}_{K(C), S}$ may just be K. e.g. $\mathcal{O}_{K\left(\mathbb{P}^{1}\right), \phi}=K$ finite field.
Application 7
$P(x), Q(x) \in \mathbb{F}_{q}[x]$ co-prime polynomial irreducible $f \cong \operatorname{Pmod} Q$.

$$
\delta\left(f(x) \in \mathbb{F}_{q}[x]\right)=\frac{1}{\#\left(\mathbb{F}_{q}[x] / Q(x)\right)^{x}}
$$

