ALGEBRAIC NUMBER THEORY LECTURE 34

NOTES BY NATHAN VANDERWERF

Let $S \subset C$, Recall that $\mathcal{O}_S = \mathcal{O}_{K(C),S} = \{f \in K(C) | \text{all poles of } f \subset S\}$. **Proposition 1** (1) $\mathcal{O}_{\phi} = K$ (2) If $S \neq \phi$ then $\mathcal{O}_S - K \neq \phi$. **Proof** (1) Pick $f \in \mathcal{O}_{\phi}, f : C \to \mathbb{P}^1$. f has no pole so f is not surjective. Hence $f \in K$ is constant. (2) Later, follows from Riemann Roch. **Proposition 2**

Proposition 2

(3) $\operatorname{Frac}(\mathcal{O}_S) = K(C)$

Proof:

(3) Pick $f \in \mathcal{O}_{\phi} K \to K(C)/K(a)$ finite extension. It is separable iff $a \in K(C^{(p)})$. If $a \notin K(C^{(1)})$, then by a primitive element theorem, K(C) = K(a)(b) for some b. We claim you can always write K(C) = K(a)K(b) where $a, b \in \mathcal{O}_S$. Suppose $a \in K(C^{(p)})$. Pick $P \notin S$, $\mathfrak{t}_p =$ uniformizer. $\mathfrak{t}_p \in K(C^{(p)})$. Label poles of t_p outside of S, p_1, \cdots, p_r with orders n_1, \cdots, n_r . since $p_i \notin S \to a(p_i) \neq \infty \in \overline{K}$, so algebraic over K. There exists $Q_i \in K[x]$ such that $Q_i(a(p_i) = 0, c_i = Q_i \circ a$. Then 1. $c_i(p_i) = 0$

2. $c_i \in K(C^{(p)})$ b/c *a* does. Set $a' = \mathfrak{t} \cap c_i^{n_i} a'(P_i)$ well defined \mathfrak{t} pole order n_i . c_i zero order ≥ 1 at P_i . So $\mathfrak{t} \cap c_i^{n_i}$ has no pole at P_i . a'(Q) well defined for $Q \notin S \cup \{P_i\}, a'(Q) \in \overline{K}$. $\Longrightarrow t'(Q) \in \overline{K}$ so $a' \in \mathcal{O}_S$ and also $a' \notin K(C^{(p)})$. We get an element of $\mathcal{O}_S - K(C^{(p)})$, either *a* or *a'*. Thus K(C) = K(a, b) where $a \in \mathcal{O}_S$ and $b \in K(C)$. Take $b' = b \cap d_j^{m_j}$. If $b \notin \mathcal{O}_S$, then it has poles $Q_1, c \dots Q_s \in S$ with orders m_1, \dots, m_s . $a(Q_i) \in \overline{K}$, so $d_j = \min$ poly of $a(Q_i)$ evaluated at *a*. $b' = b \cap d_j^{m_j} \in \mathcal{O}_S$ with the $d_j^{m_j} \in \mathcal{O}_S$. So K(a, b) = K(a, b'). So K(C) = K(a, b)where $a, b \in \mathcal{O}_S$. $K(C) \supset \operatorname{Frak}(\mathcal{O}_S) \supset K[a, b] \supset K(a, b) - K(C)$. \Box **Proposition 3**

(4) Let $S \neq \phi$. If $\mathfrak{p} \subset \mathcal{O}_s$ prime ideal, then $\mathcal{O}_S/\mathfrak{p}$ is algebraic/K.

(5) Every prime ideal of \mathfrak{p} of \mathcal{O}_S is of the form $\mathfrak{p} = \mathcal{O}_S \cap \mathfrak{m}_P$, (which is maximal), $P \in C(\bar{k})$.

Proof:

Pick $a \in \mathfrak{p} - K$, where \mathfrak{p} is a nontrivial ideal and K(C)/K(a) is finite. Let $b \in \mathcal{O}_S \subset K(C)$ be algebraic over K(a). $\sum \frac{P_i(a)}{Q_i(a)}b^i = 0$. Clearing denominator, owe get that b is algebraic over K[a]., Therefore, $b \pmod{\mathfrak{p}}$ is algebraic over $K[a]/(\mathfrak{p} \cap K[a] = K$. $a \in \mathfrak{p}$ so $b \pmod{\mathfrak{p}}$ is algebraic over K.

(5). (Sketch of a proof) Let $\mathfrak{p} \subset \mathcal{O}_S$ be a prime ideal. $\mathcal{O}_S/\mathfrak{p}$ is algebraic over K. so $\phi: \mathcal{O}_S/\mathfrak{p} \to \overline{K}$. We can write K(c) = K(a,b) for $a, b \in \mathcal{O}_S$. Then $0 \to \mathfrak{P} \to \mathcal{O}_s \to \overline{K} \to 0$. For $a, b \in \mathcal{O}_S$, the map $K(X, Y) \to K(a, b) = K(c)$ is surjective. Can

think of C as a curve in \mathbb{P}^2 with vars X, Y. Take $P = \psi(a), \psi(b)$ as a point in $C(\bar{K})$. If $f \in K(C)$ in the X, Y parameters, then $f(P) = f(\psi(a), \psi(b)) = \psi(f(a, b))$, and $\mathfrak{m}_P = \{f | f(P) = 0\}\{f | \psi(f(a, b)) = 0\} = \ker \psi = \mathfrak{p}.\Box$

Recall that R is a Dedakind domain if (a), all \mathfrak{p} are maximal (b) Noetherian, and (c) integrally closed.

Theorem 4 Let $S \neq \phi$. (1) $\forall \mathfrak{p}$ prime, $\exists \mathfrak{p}^{-1} = \mathcal{O}_S$ -submodule of K(C) such that $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}_S$. (2) Every $I \subset \mathcal{O}_S$ factors uniquely into prime ideals. (3) \mathcal{O}_S is Noetherian. (4) \mathcal{O}_S is Integrally closed. (5) $\implies \mathcal{O}_S$ is Dedakind (e.g. $\phi(\mathcal{O}_S) = \text{class group.}$ Proof (1) $\mathfrak{p} = \mathfrak{m}_p$ for some $p \in C(\bar{K})$ $\mathfrak{p}^{-1} := \{ f \in K(C) | f \text{has no pole at } p \text{or simple pole} \}$ $\mathfrak{pp}^{-1} = \{fg|f(p) = 0, g(p) \text{ pole order } \leq 1\} \subset \mathcal{O}_S \text{ So } \mathcal{O}_S \subset \mathfrak{pp}^{-1}. \mathfrak{t} = \text{uniformizer}$ at \mathfrak{p} so $\mathfrak{p}K(C)_p = (\mathfrak{t}). \frac{1}{\mathfrak{t}}$ pole order 1 at p. $\forall f \in \mathcal{O}_S, f = f\mathfrak{t}\mathfrak{t}^{-1} \in \mathfrak{pp}^{-1}$ (2) Existence Remarks: $\cap_{k\geq 1}\mathfrak{p}^k = 0 \ \forall \mathfrak{p}, \ \cap_{\text{all }\mathfrak{p}_i \ \text{distinct}}\mathfrak{p}_i = 0$ This is true because $f \in K(C)$ has finitely many poles. $I_1 = I = \text{ideal.} \subset \mathfrak{p}_1$ if equal $I = \mathfrak{p}_1$ If not, $I_2 = I_1 \mathfrak{p}_1^{-1} = \mathfrak{p}_2$ Either $I = \mathfrak{p}_1 \mathfrak{p}_2$ or not. If not, set $I_3 = I_2 \mathfrak{p}_2^{-1} \subset \mathfrak{p}_3$. If not does not terminate, then $I \subset \mathfrak{p}_1 \cdots \mathfrak{p}_k$ as $k \to \infty$ but $\bigcap_{i \to \infty} \mathfrak{p}_i \cdots \mathfrak{p}_k = 0$ so must terminate, and therefore $I = \mathfrak{p}_1 \cdots \mathfrak{p}_k$ for primes \mathfrak{p}_i . For uniqueness, note that if $\prod \mathfrak{p}_n = \prod \mathfrak{q}_m$, then it must be that $\mathfrak{p}_i = q_j$ for some $i \leq n, j \leq m$. Multiply by \mathfrak{p}_i^{-1} and repeat.