ALGEBRAIC NUMBER THEORY LECTURE 34

NOTES BY NATHAN VANDERWERF

Let $S \subset C$, Recall that $\mathcal{O}_{S}=\mathcal{O}_{K(C), S}=\{f \in K(C) \mid$ all poles of $f \subset S\}$.

Proposition 1

(1) $\mathcal{O}_{\phi}=K$
(2) If $S \neq \phi$ then $\mathcal{O}_{S}-K \neq \phi$.

Proof

(1) Pick $f \in \mathcal{O}_{\phi}, f: C \rightarrow \mathbb{P}^{1}$. f has no pole so f is not surjective. Hence $f \in K$ is constant.
(2) Later, follows from Riemann Roch.

Proposition 2

(3) $\operatorname{Frac}\left(\mathcal{O}_{S}\right)=K(C)$

Proof:
(3) Pick $f \in \mathcal{O}_{\phi} K \rightarrow K(C) / K(a)$ finite extension. It is separable iff $a \in K\left(C^{(p)}\right)$. If $a \notin K\left(C^{(1)}\right)$, then by a primitive element theorem, $K(C)=K(a)(b)$ for some b. We claim you can always write $K(C)=K(a) K(b)$ where $a, b \in \mathcal{O}_{S}$. Suppose $a \in K\left(C^{(p)}\right)$. Pick $P \notin S, \mathfrak{t}_{p}=$ uniformizer. $\mathfrak{t}_{p} \in K\left(C^{(p)}\right)$. Label poles of t_{p} outside of $S, p_{1}, \cdots p_{r}$ with orders n_{1}, \cdots, n_{r}. since $p_{i} \notin S \rightarrow a\left(p_{i}\right) \neq \infty \in \bar{K}$, so algebraic over K. There exists $Q_{i} \in K[x]$ such that $Q_{i}\left(a\left(p_{i}\right)=0, c_{i}=Q_{i} \circ a\right.$. Then 1. $c_{i}\left(p_{i}\right)=0$
2. $c_{i} \in K\left(C^{(p)}\right) \mathrm{b} / \mathrm{c} a$ does. Set $a^{\prime}=\mathfrak{t} \cap c_{i}^{n_{i}} a^{\prime}\left(P_{i}\right)$ well defined \mathfrak{t} pole order n_{i}. c_{i} zero order ≥ 1 at P_{i}. So $\mathfrak{t} \cap c_{i}^{n_{i}}$ has no pole at P_{i}. a'(Q) well defined for $Q \notin S \cup\left\{P_{i}\right\}, a^{\prime}(Q) \in \bar{K} . \Longrightarrow t^{\prime}(Q) \in \bar{K}$ so $a^{\prime} \in \mathcal{O}_{S}$ and also $a^{\prime} \notin K\left(C^{(p)}\right)$. We get an element of $\mathcal{O}_{S}-K\left(C^{(p)}\right)$, either a or a^{\prime}. Thus $K(C)=K(a, b)$ where $a \in \mathcal{O}_{S}$ and $b \in K(C)$. Take $b^{\prime}=b \cap d_{j}^{m_{j}}$. If $b \notin \mathcal{O}_{S}$, then it has poles $Q_{1}, c \ldots Q_{s} \in S$ with orders $m_{1}, \cdots, m_{s} . a\left(Q_{i}\right) \in \bar{K}$, so $d_{j}=\min$ poly of $a\left(Q_{i}\right)$ evaluated at a. $b^{\prime}=b \cap d_{j}^{m_{j}} \in \mathcal{O}_{S}$ with the $d_{j}^{m_{j}} \in \mathcal{O}_{S}$. So $K(a, b)=K\left(a, b^{\prime}\right)$. So $K(C)=K(a, b)$ where $a, b \in \mathcal{O}_{S} . K(C) \supset \operatorname{Frak}\left(\mathcal{O}_{S}\right) \supset K[a, b] \supset K(a, b)-K(C)$.

Proposition 3

(4) Let $S \neq \phi$. If $\mathfrak{p} \subset \mathcal{O}_{s}$ prime ideal, then $\mathcal{O}_{S} / \mathfrak{p}$ is algebraic $/ K$.
(5) Every prime ideal of \mathfrak{p} of \mathcal{O}_{S} is of the form $\mathfrak{p}=\mathcal{O}_{S} \cap \mathfrak{m}_{P}$, (which is maximal), $P \in C(\bar{k})$.

Proof:

Pick $a \in \mathfrak{p}-K$, where \mathfrak{p} is a nontrivial ideal and $K(C) / K(a)$ is finite. Let $b \in \mathcal{O}_{S} \subset K(C)$ be algebraic over $K(a) . \sum \frac{P_{i}(a)}{Q_{i}(a)} b^{i}=0$. Clearing denominator, owe get that b is algebraic over $K[a]$., Therefore, $b(\bmod \mathfrak{p})$ is algebraic over $K[a] /(\mathfrak{p} \cap K[a]=K . a \in \mathfrak{p}$ so $b(\bmod \mathfrak{p})$ is algebraic over K.
(5). (Sketch of a proof) Let $\mathfrak{p} \subset \mathcal{O}_{S}$ be a prime ideal. $\mathcal{O}_{S} / \mathfrak{p}$ is algebraic over K. so $\phi: \mathcal{O}_{S} / \mathfrak{p} \rightarrow \bar{K}$. We can write $K(c)=K(a, b)$ for $a, b \in \mathcal{O}_{S}$. Then $0 \rightarrow \mathfrak{P} \rightarrow \mathcal{O}_{s} \rightarrow$ $\bar{K} \rightarrow 0$. For $a, b \in \mathcal{O}_{S}$, the map $K(X, Y) \rightarrow K(a, b)=K(c)$ is surjective. Can
think of C as a curve in \mathbb{P}^{2} with vars X, Y. Take $P=\psi(a), \psi(b)$ as a point in $C(\bar{K})$. If $f \in K(C)$ in the X, Y parameters, then $f(P)=f(\psi(a), \psi(b))=\psi(f(a, b))$, and $\mathfrak{m}_{P}=\{f \mid f(P)=0\}\{f \mid \psi(f(a, b))=0\}=$ ker $\psi=\mathfrak{p}$.

Recall that R is a Dedakind domain if (a), all \mathfrak{p} are maximal (b) Noetherian, and (c) integrally closed.

Theorem 4 Let $S \neq \phi$.
(1) $\forall \mathfrak{p}$ prime, $\exists \mathfrak{p}^{-1}=\mathcal{O}_{S}$-submodule of $K(C)$ such that $\mathfrak{p p}^{-1}=\mathcal{O}_{S}$.
(2) Every $I \subset \mathcal{O}_{S}$ factors uniquely into prime ideals.
(3) \mathcal{O}_{S} is Noetherian.
(4) \mathcal{O}_{S} is Integrally closed.
(5) $\Longrightarrow \mathcal{O}_{S}$ is Dedakind (e.g. $\phi\left(\mathcal{O}_{S}\right)=$ class group.

Proof
(1) $\mathfrak{p}=\mathfrak{m}_{p}$ for some $p \in C(\bar{K})$
$\mathfrak{p}^{-1}:=\{f \in K(C) \mid f$ has no pole atpor simple pole $\}$
$\mathfrak{p p}^{-1}=\{f g \mid f(p)=0, g(p)$ pole order $\leq 1\} \subset \mathcal{O}_{S}$ So $\mathcal{O}_{S} \subset \mathfrak{p p}^{-1}$. $\mathfrak{t}=$ uniformizer
at \mathfrak{p} so $\mathfrak{p} K(C)_{p}=(\mathfrak{t}) . \frac{1}{t}$ pole order 1 at $p . \forall f \in \mathcal{O}_{S}, f=f \mathfrak{t t}^{-1} \in \mathfrak{p p}^{-1}$
(2) Existence Remarks: $\cap_{k \geq 1} \mathfrak{p}^{k}=0 \forall \mathfrak{p}, \cap_{\text {all } \mathfrak{p}_{i} \text { distinct } \mathfrak{p}_{i}=0 ~}^{\text {den }}$

This is true because $f \in K(C)$ has finitely many poles. $I_{1}=I=$ ideal. $\subset \mathfrak{p}_{1}$ if equal $I=\mathfrak{p}_{1}$ If not, $I_{2}=I_{1} \mathfrak{p}_{1}^{-1}=\mathfrak{p}_{2}$ Either $I=\mathfrak{p}_{1} \mathfrak{p}_{2}$ or not. If not, set $I_{3}=I_{2} \mathfrak{p}_{2}^{-1} \subset \mathfrak{p}_{3}$. If not does not terminate, then $I \subset \mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ as $k \rightarrow \infty$ but $\cap_{i \rightarrow \infty} \mathfrak{p}_{i} \cdots \mathfrak{p}_{k}=0$ so must terminate, and therefore $I=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ for primes \mathfrak{p}_{i}. For uniqueness, note that if $\prod \mathfrak{p}_{n}=\prod \mathfrak{q}_{m}$, then it must be that $\mathfrak{p}_{i}=q_{j}$ for some $i \leq n, j \leq m$. Multiply by \mathfrak{p}_{i}^{-1} and repeat.

