Introduction to Algebraic Number Theory Lecture 36

Erin Bela

April 16, 2014

Definition 0.1 Let C be a smooth projective curve. We define the **cotangent space**:

$$\Omega_C = \left\{ \bar{K}(C) - \text{ vector space generated by } df, \ f \in \bar{K}(C) \right\}$$
$$\left\{ d(f+g) = df + dg, \ d \ const \ = 0, \ d(fg) = f \ dg + g \ df \right\}$$

If $\varphi: C_1 \to C_2$ is a morphism then we have a map $\varphi^*: \Omega_{C_2} \to \Omega_{C_1}$ given by:

$$\varphi^*\left(\sum f_i \cdot dg\right) = \sum \varphi^*(f_i) \, d\varphi(g_i)$$

Remark: φ is purely inseparable if $\varphi^* = 0$.

Proposition 0.2 Pick $\omega \in \Omega_C$, where Ω_C is a 1-dimensional K(C)-vector space. Let P be a point on C, t_P a uniformizer at P. Then we can write $\omega = g dt_P$, for $g, t_P \in \overline{K}(C)$.

Definition 0.3 Define $\operatorname{ord}_P(\omega) := \operatorname{ord}_P(g)$. This is independent of the choice of t_P .

Definition 0.4 Define

$$div(\omega) = \sum_{P \in C} \operatorname{ord}_P(\omega) \cdot [P]$$

We can show that for all but finitely many P, $\operatorname{ord}_P(\omega) = 0$ and so $div(\omega) \in Div(C)$. Now, $\omega_2 = f \cdot \omega$ is also a generator of Ω_C (1-dimensional) and $div(\omega_2) = div(f \cdot \omega) = div(f) + div(\omega)$. So, $div(\omega)$ depends on ω , but its projection to $\operatorname{Pic}(C) = \operatorname{Div}(C)/div(\bar{K}(C))$ does not.

Definition 0.5 We define the **Canonical Class of** C to be $K_C = div(\omega) \in Pic(C)$.

Example Let $C = \mathbb{P}^1$. We have $\bar{K}(C) = \bar{K}(t)$, $\Omega_{\mathbb{P}^1} = \bar{K}(t)dt$, df(t) = f'(t)dt. Let $\omega = dt$. For all points $\lambda \neq \infty$ in \mathbb{P}^1 , the uniformizer is $t_{\lambda} = t - \lambda$,

$$\frac{\omega}{dt_{\lambda}} = \frac{\omega}{d(t-\lambda)} = \frac{dt}{d(t-\lambda)} = 1,$$

and $\operatorname{ord}_{\lambda}(dt) = 0$. If $\lambda = \infty$, the uniformizer is $t_{\infty} = 1/t$,

$$\frac{\omega}{dt_{\infty}} = \frac{dt}{d(\frac{1}{t})} = -t^2,$$

so $\operatorname{ord}_{\infty}(dt) = \operatorname{ord}_{\infty}(-t^2) = -2$. Therefore, $K_{\mathbb{P}^1} = -2[\infty], t^2 = t_{\infty}^{-2}$, so $K_{\mathbb{P}^1} = -2$, $\operatorname{Pic}(\mathbb{P}^1) \cong \mathbb{Z}$.

Example Let $C = y^2 = (x - e_1)(x - e_2)(x - e_3)$. $P_i = (e_i : 0 : 1)$.

$$div(y) = [P_1] + [P_2] + [P_3] - 3[\infty]$$
$$div(x - e_i) = 2[P_i] - 2[\infty]$$

Let w = dx, $P = P_i$. We have $\operatorname{ord}_{P_i}(y) = 1$.

$$\operatorname{ord}_{P_i}(\omega) = \operatorname{ord}_{P_i}\left(\frac{dx}{dy}\right)$$
$$2ydy = \sum_{i < j} (x - e_i)(x - e_j)dx$$
$$\implies \frac{dx}{dy} = \frac{2y}{\sum_{i < j} (x - e_i)(x - e_j)}$$
$$\operatorname{ord}_{P_i}\left(\frac{dx}{dy}\right) = \operatorname{ord}_{P_i}(y) - \operatorname{ord}_{P_i}\left(\sum_{i < j} (x - e_i)(x - e_j)\right) = 1$$

If $P \notin \{P_1, P_2, P_3, \infty\}$, $\operatorname{ord}_P(dx) = 0$.

Finally, if $P = \infty$ we use projective coordinates X, Y, Z with x = X/Z and y = Y/Z. Then we previously computed that $\operatorname{ord}_{\infty}(Z) = 3$ and $\operatorname{ord}_{\infty}(X) = 1$ and so $\operatorname{ord}_{\infty}(x) = -2$. We choose $t_{\infty} = x^{-1/2}$ as a uniformizer. Then

$$\operatorname{ord}_{\infty}(\omega) = \operatorname{ord}_{\infty} \frac{dx}{dx^{-1/2}} = \operatorname{ord}_{\infty} - 2x^{3/2} = -3$$

and so we deduce that

$$div(\omega) = [P_1] + [P_2] + [P_3] - 3[\infty] = div(y)$$

Therefore $div(\omega) = 0$ in Pic(C) and the canonical class is therefore trivial.

1 Riemann-Roch

Definition 1.1 $D = \sum n_P[P] \in \text{Div}(C)$. Say $D \ge 0$ if $n_P \ge 0$ for all P.

$$\mathscr{L}(D) = \left\{ f \in \bar{K}(C)^{\times} - 0 \,|\, div(f) \ge -D \right\}$$
$$= \left\{ f \,|\, \forall P, \, \mathrm{ord}_P(f) \ge -n_P \right\}$$

If $n_P < 0$, f has a zero of order at least n_P at P. If $n_P > 0$, f has a pole of order at most n_P at P. $\mathscr{L}(D)$ is a finite-dimensional \bar{K} -vector space.

Remark: Let $s \in C(\bar{K})$,

$$\begin{split} \mathcal{O}_s &= \{f \mid f \text{ has a pole at } s, \text{ no other pole} \}\\ D &= \sum_{P \in S} [P]\\ \mathscr{L}(nD) &= \{f \text{ pole of order at most } n \text{ at } P \in S, \text{ no other pole} \}\\ \mathcal{O}_s &= \bigcup_{n \geq 1} \mathscr{L}(nD) \end{split}$$

Theorem 1.2 Riemann-Roch Let $\ell(D) = \dim_{\bar{K}} \mathscr{L}(D)$.

(1) $\ell(D)$ depends only on the image of D in $\operatorname{Pic}(C)$.

- (2) $\ell(0) = 1$. If deg(D) < 0, then $\ell(D) = 0$.
- (3) There exists a $g \in \mathbb{Z}$ called the genus of C. Furthermore,

$$\ell(D) - \ell(K_C - D) = \deg(D) - g + 1$$

Proof (1)

$$\begin{aligned} \mathscr{L}(D) \to \mathscr{L}(D + div(f)) \\ g \mapsto g/f \end{aligned}$$

(2) $f \in \mathscr{L}(D), f : C \to \mathbb{P}^1$. If $D = 0, div(f) \ge 0$ so there are no poles. f is not surjective if and only if f is constant. Thus, $\mathscr{L}(0) = \overline{K}$. Suppose deg D < 0. Then $f \in \mathscr{L}(D), div(f) \ge -D$, and $\deg(div(f)) \ge \deg(-D) > 0$ implies f = 0.

Corollary 1.3 (1) $\ell(K_C) = g$

- (2) $\deg(K_C) = 2g 2$
- (3) If deg D > 2g 2, then $\ell(D) = \deg(D) g + 1$.

Proof (1) $\ell(0) - \ell(K_C) = 0 - g + 1 \implies \ell(K_C) = g.$

- (2) $\underbrace{\ell(K_C)}_{g} \underbrace{\ell(0)}_{1} = \deg K_C g + 1 \implies \deg K_C = 2g 2.$
- (3) We know $\ell(D) \ell(K_C D) = \deg D g + 1$. Since $\deg(K_C D) = \deg(K_C) \deg(D) = 2g 2 \deg D < 0$. So $\ell(K_C - D) = 0$ and the result follows.

Example If $C = \mathbb{P}^1$, $g_{\mathbb{P}^1} = 0$, and $\deg(K_{\mathbb{P}^1}) = -2$. If E is an elliptic curve, $g_E = 1$, so $\deg(K_E) = 0$

Application of Riemann-Roch: If $s \neq 0$, $\mathcal{O}_S \supseteq \bar{K}$. Pick $n > \frac{2g-2}{\#s}$. Then $\deg(nD) = n\#s > 2g - 2$. It follows $\ell(nD) = n\#s - g + 1 \ge g$. So for $n \gg 0$, $\dim_{\bar{K}} \mathscr{L}(nD) > 1$. So $\mathscr{L}(nD) \supseteq \bar{K}$. $\mathscr{O}_s = \bigcup_{n \ge 1} \mathscr{L}(nD) \supseteq \bar{K}$.

2 Elliptic Curves and Weierstrass Equations

Definition 2.1 E is an elliptic curve over K is a smooth projective curve of genus 1 containing a point 0.

Proposition 2.2 There exists

$$E \hookrightarrow \mathbb{P}^2$$
$$0 \mapsto \infty$$

such that E is the vanishing of the Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$ are the affine coordinates of \mathbb{P}^2 (projective coordinates (X : Y : Z)). **Proof** We compute

$$\begin{split} \mathscr{L}(2[0]) &= 2.\\ \ell(3[0]) &= \deg[3 \cdot 0] - g + 1\\ \mathscr{L}(2[0]) &= \bar{K} \oplus x \cdot \bar{K}\\ \ell(3[0]) &= \deg[3 \cdot 0] - g + 1\\ \mathscr{L}(3[0]) &= \bar{K} \oplus x \bar{K} \oplus y \bar{K}, \; x, y \in \bar{K}(E) \end{split}$$

where the last line comes from the fact that $\mathscr{L}(2[0])\subset \mathscr{L}(3[0]).$

Define the map:

$$\begin{split} E &\hookrightarrow \mathbb{P}^2 \\ P &\mapsto (x(P):y(P):1) \text{ for } P \neq 0 \\ 0 &\mapsto \infty = (0:1:0). \end{split}$$

Since $\div(x) \ge -2[0]$ and $\div(y) \ge -3[0]$ it follows that $1, x, x^2, x^3, xy, y, y^2 \in \mathscr{L}(6[0])$, where dim $\mathscr{L}(6[0]) = 6$. Thus the 7 functions $1, x, x^2, x^3, xy, y, y^2$ satisfy a linear dependence. This linear dependence has the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

for some $a_i \in K$ and is called a Weierstrass equation for E.