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Definition 0.1 Let C be a smooth projective curve. We define the cotangent space:

ΩC =
{
K̄(C)− vector space generated by df, f ∈ K̄(C)

}
{d(f + g) = df + dg, d const = 0, d(fg) = f dg + g df}

If ϕ : C1 → C2 is a morphism then we have a map ϕ∗ : ΩC2
→ ΩC1

given by:

ϕ∗
(∑

fi · dg
)

=
∑

ϕ∗(fi) dϕ(gi).

Remark: ϕ is purely inseparable if ϕ∗ = 0.

Proposition 0.2 Pick ω ∈ ΩC , where ΩC is a 1-dimensional K(C)-vector space. Let P be a point on C,
tP a uniformizer at P . Then we can write ω = g dtP , for g, tP ∈ K̄(C).

Definition 0.3 Define ordP (ω) := ordP (g). This is independent of the choice of tP .

Definition 0.4 Define

div(ω) =
∑
P∈C

ordP (ω) · [P ].

We can show that for all but finitely many P , ordP (ω) = 0 and so div(ω) ∈ Div(C). Now, ω2 = f · ω is also
a generator of ΩC (1-dimensional) and div(ω2) = div(f ·ω) = div(f) +div(ω). So, div(ω) depends on ω, but
its projection to Pic(C) = Div(C)/div(K̄(C)) does not.

Definition 0.5 We define the Canonical Class of C to be KC = div(ω) ∈ Pic(C).

Example Let C = P1. We have K̄(C) = K̄(t), ΩP1 = K̄(t)dt, df(t) = f ′(t)dt. Let ω = dt. For all points
λ 6=∞ in P1, the uniformizer is tλ = t− λ,

ω

dtλ
=

ω

d(t− λ)
=

dt

d(t− λ)
= 1,

and ordλ(dt) = 0. If λ =∞, the uniformizer is t∞ = 1/t,

ω

dt∞
=

dt

d( 1
t )

= −t2,

so ord∞(dt) = ord∞(−t2) = −2. Therefore, KP1 = −2[∞], t2 = t−2
∞ , so KP1 = −2, Pic(P1) ∼= Z.
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Example Let C = y2 = (x− e1)(x− e2)(x− e3). Pi = (ei : 0 : 1).

div(y) = [P1] + [P2] + [P3]− 3[∞]

div(x− ei) = 2[Pi]− 2[∞]

Let w = dx, P = Pi. We have ordPi
(y) = 1.

ordPi
(ω) = ordPi

(
dx

dy

)
2ydy =

∑
i<j

(x− ei)(x− ej)dx

=⇒ dx

dy
=

2y∑
i<j(x− ei)(x− ej)

ordPi

(
dx

dy

)
= ordPi(y)− ordPi

∑
i<j

(x− ei)(x− ej)

 = 1

If P 6∈ {P1, P2, P3,∞}, ordP (dx) = 0.
Finally, if P =∞ we use projective coordinates X,Y, Z with x = X/Z and y = Y/Z. Then we previously

computed that ord∞(Z) = 3 and ord∞(X) = 1 and so ord∞(x) = −2. We choose t∞ = x−1/2 as a
uniformizer. Then

ord∞(ω) = ord∞
dx

dx−1/2
= ord∞ − 2x3/2 = −3

and so we deduce that
div(ω) = [P1] + [P2] + [P3]− 3[∞] = div(y)

Therefore div(ω) = 0 in Pic(C) and the canonical class is therefore trivial.

1 Riemann-Roch

Definition 1.1 D =
∑
nP [P ] ∈ Div(C). Say D ≥ 0 if nP ≥ 0 for all P .

L (D) =
{
f ∈ K̄(C)× − 0 | div(f) ≥ −D

}
= {f | ∀P, ordP (f) ≥ −nP }

If nP < 0, f has a zero of order at least nP at P . If nP > 0, f has a pole of order at most nP at P .
L (D) is a finite-dimensional K̄-vector space.

Remark: Let s ∈ C(K̄),

Os = {f | f has a pole at s, no other pole}

D =
∑
P∈S

[P ]

L (nD) = {f pole of order at most n at P ∈ S, no other pole}

Os =
⋃
n≥1

L (nD)

Theorem 1.2 Riemann-Roch Let `(D) = dimK̄ L (D).

(1) `(D) depends only on the image of D in Pic(C).
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(2) `(0) = 1. If deg(D) < 0, then `(D) = 0.

(3) There exists a g ∈ Z called the genus of C. Furthermore,

`(D)− `(KC −D) = deg(D)− g + 1

Proof (1)

L (D)→ L (D + div(f))

g 7→ g/f

(2) f ∈ L (D), f : C → P1. If D = 0, div(f) ≥ 0 so there are no poles. f is not surjective if and
only if f is constant. Thus, L (0) = K̄. Suppose degD < 0. Then f ∈ L (D), div(f) ≥ −D, and
deg(div(f)) ≥ deg(−D) > 0 implies f = 0.

Corollary 1.3 (1) `(KC) = g

(2) deg(KC) = 2g − 2

(3) If degD > 2g − 2, then `(D) = deg(D)− g + 1.

Proof (1) `(0)− `(KC) = 0− g + 1 =⇒ `(KC) = g.

(2) `(KC)︸ ︷︷ ︸
g

− `(0)︸︷︷︸
1

= degKC − g + 1 =⇒ degKC = 2g − 2.

(3) We know `(D)−`(KC−D) = degD−g+1. Since deg(KC−D) = deg(KC)−deg(D) = 2g−2−degD < 0.
So `(KC −D) = 0 and the result follows.

Example If C = P1, gP1 = 0, and deg(KP1) = −2. If E is an elliptic curve, gE = 1, so deg(KE) = 0

Application of Riemann-Roch: If s 6= 0, OS ) K̄. Pick n > 2g−2
#s . Then deg(nD) = n#s > 2g − 2. It

follows `(nD) = n#s−g+1 ≥ g. So for n� 0, dimK̄ L (nD) > 1. So L (nD) ) K̄. Os =
⋃
n≥1 L (nD) ) K̄.

2 Elliptic Curves and Weierstrass Equations

Definition 2.1 E is an elliptic curve over K is a smooth projective curve of genus 1 containing a point 0.

Proposition 2.2 There exists

E ↪→ P2

0 7→ ∞

such that E is the vanishing of the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where x = X
Z , y = Y

Z are the affine coordinates of P2 (projective coordinates (X : Y : Z)).

Proof We compute

L (2[0]) = 2.

`(3[0]) = deg[3 · 0]− g + 1

L (2[0]) = K̄ ⊕ x · K̄
`(3[0]) = deg[3 · 0]− g + 1

L (3[0]) = K̄ ⊕ xK̄ ⊕ yK̄, x, y ∈ K̄(E)
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where the last line comes from the fact that L (2[0]) ⊂ L (3[0]).
Define the map:

E ↪→ P2

P 7→ (x(P ) : y(P ) : 1) for P 6= 0

0 7→ ∞ = (0 : 1 : 0).

Since ÷(x) ≥ −2[0] and ÷(y) ≥ −3[0] it follows that 1, x, x2, x3, xy, y, y2 ∈ L (6[0]), where dim L (6[0]) =
6. Thus the 7 functions 1, x, x2, x3, xy, y, y2 satisfy a linear dependence. This linear dependence has the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some ai ∈ K and is called a Weierstrass equation for E.
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