Introduction to Algebraic Number Theory Lecture 36

Erin Bela

April 16, 2014

Definition 0.1 Let C be a smooth projective curve. We define the cotangent space:

$$
\Omega_{C}=\frac{\{\bar{K}(C)-\text { vector space generated by } d f, f \in \bar{K}(C)\}}{\{d(f+g)=d f+d g, d \text { const }=0, d(f g)=f d g+g d f\}}
$$

If $\varphi: C_{1} \rightarrow C_{2}$ is a morphism then we have a map $\varphi^{*}: \Omega_{C_{2}} \rightarrow \Omega_{C_{1}}$ given by:

$$
\varphi^{*}\left(\sum f_{i} \cdot d g\right)=\sum \varphi^{*}\left(f_{i}\right) d \varphi\left(g_{i}\right)
$$

Remark: φ is purely inseparable if $\varphi^{*}=0$.
Proposition 0.2 Pick $\omega \in \Omega_{C}$, where Ω_{C} is a 1-dimensional $K(C)$-vector space. Let P be a point on C, t_{P} a uniformizer at P. Then we can write $\omega=g d t_{P}$, for $g, t_{P} \in \bar{K}(C)$.

Definition 0.3 Define $\operatorname{ord}_{P}(\omega):=\operatorname{ord}_{P}(g)$. This is independent of the choice of t_{P}.
Definition 0.4 Define

$$
\operatorname{div}(\omega)=\sum_{P \in C} \operatorname{ord}_{P}(\omega) \cdot[P]
$$

We can show that for all but finitely many P, $\operatorname{ord}_{P}(\omega)=0$ and so $\operatorname{div}(\omega) \in \operatorname{Div}(C)$. Now, $\omega_{2}=f \cdot \omega$ is also a generator of Ω_{C} (1-dimensional) and $\operatorname{div}\left(\omega_{2}\right)=\operatorname{div}(f \cdot \omega)=\operatorname{div}(f)+\operatorname{div}(\omega)$. So, $\operatorname{div}(\omega)$ depends on ω, but its projection to $\operatorname{Pic}(C)=\operatorname{Div}(C) / \operatorname{div}(\bar{K}(C))$ does not.

Definition 0.5 We define the Canonical Class of C to be $K_{C}=\operatorname{div}(\omega) \in \operatorname{Pic}(C)$.
Example Let $C=\mathbb{P}^{1}$. We have $\bar{K}(C)=\bar{K}(t), \Omega_{\mathbb{P}^{1}}=\bar{K}(t) d t$, $d f(t)=f^{\prime}(t) d t$. Let $\omega=d t$. For all points $\lambda \neq \infty$ in \mathbb{P}^{1}, the uniformizer is $t_{\lambda}=t-\lambda$,

$$
\frac{\omega}{d t_{\lambda}}=\frac{\omega}{d(t-\lambda)}=\frac{d t}{d(t-\lambda)}=1
$$

and $\operatorname{ord}_{\lambda}(d t)=0$. If $\lambda=\infty$, the uniformizer is $t_{\infty}=1 / t$,

$$
\frac{\omega}{d t_{\infty}}=\frac{d t}{d\left(\frac{1}{t}\right)}=-t^{2}
$$

so $\operatorname{ord}_{\infty}(d t)=\operatorname{ord}_{\infty}\left(-t^{2}\right)=-2$. Therefore, $K_{\mathbb{P}^{1}}=-2[\infty], t^{2}=t_{\infty}^{-2}$, so $K_{\mathbb{P}^{1}}=-2, \operatorname{Pic}\left(\mathbb{P}^{1}\right) \cong \mathbb{Z}$.

Example Let $C=y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) . P_{i}=\left(e_{i}: 0: 1\right)$.

$$
\begin{aligned}
\operatorname{div}(y) & =\left[P_{1}\right]+\left[P_{2}\right]+\left[P_{3}\right]-3[\infty] \\
\operatorname{div}\left(x-e_{i}\right) & =2\left[P_{i}\right]-2[\infty]
\end{aligned}
$$

Let $w=d x, P=P_{i}$. We have $\operatorname{ord}_{P_{i}}(y)=1$.

$$
\begin{aligned}
\operatorname{ord}_{P_{i}}(\omega) & =\operatorname{ord}_{P_{i}}\left(\frac{d x}{d y}\right) \\
2 y d y & =\sum_{i<j}\left(x-e_{i}\right)\left(x-e_{j}\right) d x \\
& \Longrightarrow \frac{d x}{d y}=\frac{2 y}{\sum_{i<j}\left(x-e_{i}\right)\left(x-e_{j}\right)} \\
\operatorname{ord}_{P_{i}}\left(\frac{d x}{d y}\right) & =\operatorname{ord}_{P_{i}}(y)-\operatorname{ord}_{P_{i}}\left(\sum_{i<j}\left(x-e_{i}\right)\left(x-e_{j}\right)\right)=1
\end{aligned}
$$

If $P \notin\left\{P_{1}, P_{2}, P_{3}, \infty\right\}, \operatorname{ord}_{P}(d x)=0$.
Finally, if $P=\infty$ we use projective coordinates X, Y, Z with $x=X / Z$ and $y=Y / Z$. Then we previously computed that $\operatorname{ord}_{\infty}(Z)=3$ and $\operatorname{ord}_{\infty}(X)=1$ and so $\operatorname{ord}_{\infty}(x)=-2$. We choose $t_{\infty}=x^{-1 / 2}$ as a uniformizer. Then

$$
\operatorname{ord}_{\infty}(\omega)=\operatorname{ord}_{\infty} \frac{d x}{d x^{-1 / 2}}=\operatorname{ord}_{\infty}-2 x^{3 / 2}=-3
$$

and so we deduce that

$$
\operatorname{div}(\omega)=\left[P_{1}\right]+\left[P_{2}\right]+\left[P_{3}\right]-3[\infty]=\operatorname{div}(y)
$$

Therefore $\operatorname{div}(\omega)=0$ in $\operatorname{Pic}(C)$ and the canonical class is therefore trivial.

1 Riemann-Roch

Definition 1.1 $D=\sum n_{P}[P] \in \operatorname{Div}(C)$. Say $D \geq 0$ if $n_{P} \geq 0$ for all P.

$$
\begin{aligned}
\mathscr{L}(D) & =\left\{f \in \bar{K}(C)^{\times}-0 \mid \operatorname{div}(f) \geq-D\right\} \\
& =\left\{f \mid \forall P, \operatorname{ord}_{P}(f) \geq-n_{P}\right\}
\end{aligned}
$$

If $n_{P}<0, f$ has a zero of order at least n_{P} at P. If $n_{P}>0, f$ has a pole of order at most n_{P} at P. $\mathscr{L}(D)$ is a finite-dimensional \bar{K}-vector space.

Remark: Let $s \in C(\bar{K})$,

$$
\begin{aligned}
\mathcal{O}_{s} & =\{f \mid f \text { has a pole at } s, \text { no other pole }\} \\
D & =\sum_{P \in S}[P] \\
\mathscr{L}(n D) & =\{f \text { pole of order at most } n \text { at } P \in S, \text { no other pole }\} \\
\mathcal{O}_{s} & =\bigcup_{n \geq 1} \mathscr{L}(n D)
\end{aligned}
$$

Theorem 1.2 Riemann-Roch Let $\ell(D)=\operatorname{dim}_{\bar{K}} \mathscr{L}(D)$.
(1) $\ell(D)$ depends only on the image of D in $\operatorname{Pic}(C)$.
(2) $\ell(0)=1$. If $\operatorname{deg}(D)<0$, then $\ell(D)=0$.
(3) There exists a $g \in \mathbb{Z}$ called the genus of C. Furthermore,

$$
\ell(D)-\ell\left(K_{C}-D\right)=\operatorname{deg}(D)-g+1
$$

Proof (1)

$$
\begin{aligned}
\mathscr{L}(D) & \rightarrow \mathscr{L}(D+\operatorname{div}(f)) \\
g & \mapsto g / f
\end{aligned}
$$

(2) $f \in \mathscr{L}(D), f: C \rightarrow \mathbb{P}^{1}$. If $D=0, \operatorname{div}(f) \geq 0$ so there are no poles. f is not surjective if and only if f is constant. Thus, $\mathscr{L}(0)=\bar{K}$. Suppose $\operatorname{deg} D<0$. Then $f \in \mathscr{L}(D)$, $\operatorname{div}(f) \geq-D$, and $\operatorname{deg}(\operatorname{div}(f)) \geq \operatorname{deg}(-D)>0$ implies $f=0$.
Corollary 1.3 (1) $\ell\left(K_{C}\right)=g$
(2) $\operatorname{deg}\left(K_{C}\right)=2 g-2$
(3) If $\operatorname{deg} D>2 g-2$, then $\ell(D)=\operatorname{deg}(D)-g+1$.

Proof $(1) \ell(0)-\ell\left(K_{C}\right)=0-g+1 \Longrightarrow \ell\left(K_{C}\right)=g$.
(2) $\underbrace{\ell\left(K_{C}\right)}_{g}-\underbrace{\ell(0)}_{1}=\operatorname{deg} K_{C}-g+1 \Longrightarrow \operatorname{deg} K_{C}=2 g-2$.
(3) We know $\ell(D)-\ell\left(K_{C}-D\right)=\operatorname{deg} D-g+1$. Since $\operatorname{deg}\left(K_{C}-D\right)=\operatorname{deg}\left(K_{C}\right)-\operatorname{deg}(D)=2 g-2-\operatorname{deg} D<0$. So $\ell\left(K_{C}-D\right)=0$ and the result follows.

Example If $C=\mathbb{P}^{1}, g_{\mathbb{P}^{1}}=0$, and $\operatorname{deg}\left(K_{\mathbb{P}^{1}}\right)=-2$. If E is an elliptic curve, $g_{E}=1$, $\operatorname{so} \operatorname{deg}\left(K_{E}\right)=0$
Application of Riemann-Roch: If $s \neq 0, \mathcal{O}_{S} \supsetneq \bar{K}$. Pick $n>\frac{2 g-2}{\# s}$. Then $\operatorname{deg}(n D)=n \# s>2 g-2$. It follows $\ell(n D)=n \# s-g+1 \geq g$. So for $n \gg 0, \operatorname{dim}_{\bar{K}} \mathscr{L}(n D)>1$. So $\mathscr{L}(n D) \supsetneq \bar{K} . \mathscr{O}_{s}=\bigcup_{n \geq 1} \mathscr{L}(n D) \supsetneq \bar{K}$.

2 Elliptic Curves and Weierstrass Equations

Definition 2.1 E is an elliptic curve over K is a smooth projective curve of genus 1 containing a point 0.
Proposition 2.2 There exists

$$
\begin{gathered}
E \hookrightarrow \mathbb{P}^{2} \\
0 \mapsto \infty
\end{gathered}
$$

such that E is the vanishing of the Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $x=\frac{X}{Z}, y=\frac{Y}{Z}$ are the affine coordinates of \mathbb{P}^{2} (projective coordinates $(X: Y: Z)$).
Proof We compute

$$
\begin{aligned}
\mathscr{L}(2[0]) & =2 . \\
\ell(3[0]) & =\operatorname{deg}[3 \cdot 0]-g+1 \\
\mathscr{L}(2[0]) & =\bar{K} \oplus x \cdot \bar{K} \\
\ell(3[0]) & =\operatorname{deg}[3 \cdot 0]-g+1 \\
\mathscr{L}(3[0]) & =\bar{K} \oplus x \bar{K} \oplus y \bar{K}, x, y \in \bar{K}(E)
\end{aligned}
$$

where the last line comes from the fact that $\mathscr{L}(2[0]) \subset \mathscr{L}(3[0])$.
Define the map:

$$
\begin{aligned}
E & \hookrightarrow \mathbb{P}^{2} \\
P & \mapsto(x(P): y(P): 1) \text { for } P \neq 0 \\
0 & \mapsto \infty=(0: 1: 0)
\end{aligned}
$$

Since $\div(x) \geq-2[0]$ and $\div(y) \geq-3[0]$ it follows that $1, x, x^{2}, x^{3}, x y, y, y^{2} \in \mathscr{L}(6[0])$, where $\operatorname{dim} \mathscr{L}(6[0])=$ 6. Thus the 7 functions $1, x, x^{2}, x^{3}, x y, y, y^{2}$ satisfy a linear dependence. This linear dependence has the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

for some $a_{i} \in K$ and is called a Weierstrass equation for E.

