Math 80550 Algebraic Number Theory Lecture 37

Notes by Erin Bela

April 30, 2014

1 April 23, 2014 - Function Fields and Hecke Theory

Hecke Theory is a fancy way of saying L-functions and their functional equations. Let $K=\mathbb{F}_{q}$ where $q=p^{r}, C$ a smooth projective curve over K, and $C(\bar{K})=\{$ all points on C with coefficients in $\vec{K}\}$. We defined,

$$
\operatorname{Div}(C)=\bigoplus_{P \in C(\bar{K})}[P] \cdot \mathbb{Z}
$$

Let $\operatorname{Div}(C / K)$ be the abelian subgroup of $\operatorname{Div}(C)$ defined by

$$
\left\{\sum n_{P} \cdot[P] \mid P \in C(\bar{K}) \text { such that } n_{P} \text { are all equal if } P \text { varies in } G_{\bar{K} / K^{-o r b i t}}\right\}
$$

Example Let $C=\mathbb{P}^{1}, p \equiv 3 \bmod 4, \sqrt{-1} \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}$. Then $[\sqrt{-1}: 1] \in \operatorname{Div}\left(\mathbb{P}^{1}\right)$. We have,

$$
\begin{aligned}
& {[\sqrt{-1}: 1]+[-\sqrt{-1}: 1] \in \operatorname{Div}\left(\mathbb{P}^{1} / \mathbb{F}_{p}\right)} \\
& \quad[P]+[\bar{P}]
\end{aligned}
$$

Also, have

$$
[1: 1]+2([\sqrt{1}: 1]+[-\sqrt{1}: 1]) \in \operatorname{Div}\left(\mathbb{P}^{1} / \mathbb{F}_{p}\right)
$$

Idea: We have a correspondence

$$
\begin{aligned}
\operatorname{Div}(C / K) & \leftrightarrow \text { fractional ideals in } K(C) \\
\sum n_{P} \cdot[P] & \mapsto \prod \mathfrak{m}_{P}^{n_{P}}
\end{aligned}
$$

Get,

We define:

$$
\begin{gathered}
\operatorname{deg}: \operatorname{Div}(C / K) \rightarrow \mathbb{Z} \\
\operatorname{Div}^{0}(C / K)=\operatorname{ker}(\operatorname{deg})
\end{gathered}
$$

Remark: If $f \in K(C)$, then $\operatorname{div}(f) \in \operatorname{Div}(C / K)$. (Why? If $\sigma \in G a l(\bar{K} / K)$, then $\sigma(f)=f$ because $f \in K(C)$. Then

$$
\begin{array}{cc}
\sigma(\operatorname{div}(f)) \\
\sum n_{\sigma(P)}[P]=\sum n_{P}[\sigma(P)] & =\operatorname{div}(\sigma(f))=\operatorname{div}(f) . \\
\sum n_{P}[P]
\end{array}
$$

Definition We define:

$$
\begin{aligned}
\operatorname{Pic}(C / K) & =\operatorname{Div}(C / K) / \operatorname{div}(K(C))^{x} \\
\begin{array}{cl}
C l(C) \\
\text { class group }
\end{array} & \rightarrow \operatorname{Pic}^{0}(C / K)=\operatorname{Div}^{0}(C / K) / \operatorname{div}(K(C))^{x}
\end{aligned}
$$

Proposition 1.1 If $D \in \operatorname{Div}(C)$, define $\|D\|=q^{\operatorname{deg} D}$.

1. There exists $D \in \operatorname{Div}(C / K)$ with $\operatorname{deg}(D)=1$,
2. $\#\{D \in \operatorname{Div}(C / K),\|D\| \leq n\}<\infty$,
3. $\operatorname{Pic}^{0}(C / K)$ is finite. $h_{C}=\# \operatorname{Pic}(C / K)$ (class number).

Proof (1) Non-trivial. If $C(K)$ has a point $P, D=[P] \in \operatorname{Div}(C / K)$. Otherwise, if $C(K)=\emptyset$, then D of degree 1 would have to have positive and negative coefficients. Proof omitted.
(2) $\#\{D \in \operatorname{Div}(C / K),\|D\| \leq n\}<\infty \Longleftrightarrow \#\left\{D \geq 0 \in \operatorname{Div}(C / K)\right.$ s.t. $\left.\operatorname{deg} D<\log _{q}(n)\right\}$ is bounded for $P \in C(\bar{K}) . P \in C\left(\mathbb{F}_{q^{r}}\right)$ but not in any smaller field. Define

$$
a_{P}:=r=\#\left\{\sigma(P) \mid \sigma \in G_{\bar{K} / K}\right\}
$$

Then

$$
\operatorname{deg} D=\sum_{\substack{P \text { up to } \\ \text { Galois action }}} n_{P} \cdot a_{P} \quad(D \in \operatorname{Div}(C / K))
$$

$C\left(\mathbb{F}_{q^{r}}\right)$ is finite. e.g. $C \subset \mathbb{P}^{\mathbb{N}}, C\left(\mathbb{F}_{q^{r}}\right) \subset \mathbb{P}_{\mathbb{F}_{q^{r}}}^{N}$ where $\mathbb{P}_{\mathbb{F}_{q^{r}}}^{N}$ has size $q^{r(N+1)-1}$.
Now, $\operatorname{deg} D=\sum n_{P} \cdot a_{P}<m=\log _{q}(n)$ implies $a_{P} \leq n$ for all P appearing in D. Thus $P \in$ $C\left(\mathbb{F}_{q}^{a_{P}}\right)$ is finite. So all P appearing in $D_{\geq 0} \in \operatorname{Div}(C / K)$ must be among finitely many possibilities $C\left(\mathbb{F}_{q}\right) \cup C\left(\mathbb{F}_{q^{2}}\right) \cup \cdots \cup C\left(\mathbb{F}_{q^{m}}\right)$. So,

$$
\begin{aligned}
D \subset & \left\{\sum n_{P}[P] \mid P \in \bigcup_{i=1}^{m} \subset C\left(\mathbb{F}_{q^{i}}\right)\right\} \quad\left(n_{P} \geq 0\right) \\
\operatorname{deg} D & =\sum n_{P} a_{P} \leq m \\
& \Longrightarrow n_{P} \leq m
\end{aligned}
$$

and there are finitely many such D.
(3) $\operatorname{Pic}^{0}(C / K)$ has size $h_{C}<\infty$. Pick $u \in \operatorname{Div}(C / K)$ with $\operatorname{deg}(u)=1$. Pick $D \in \operatorname{Pic}^{0}(C / K), n \gg 2 g-2$. Recall from Riemann Roch,

$$
\begin{aligned}
\operatorname{deg}(D+n u) & =n \gg 2 g-2 \\
\operatorname{dim}_{\bar{K}} \mathscr{L}(D+n u) & =n-g+1
\end{aligned}
$$

Can pick $f \in \mathscr{L}(D+n u), f \in K(C)^{x}$ such that $\operatorname{div}(f) \geq-(D+n u) . A=\operatorname{div}(f)+D+n u \geq 0$, $\operatorname{deg}(A)=n$, so there are finitely many choices for A. Then $D=A-\operatorname{div}(f)-n u$ and the image of D in $\operatorname{Pic}^{0}(C / K)$ is $A-n \cdot u$ (finitely many choices for A and $n \cdot u$ is fixed). $\operatorname{So~} \operatorname{Pic}^{0}(C / K)$ is finite.

We have a correspondence

$$
\begin{aligned}
\operatorname{Div}(C / K) & \leftrightarrow \text { ideals } \\
\operatorname{Pic}^{0}(C / K) & \leftrightarrow \text { class group }
\end{aligned}
$$

Definition

$$
\zeta_{C}(s):=\sum_{\substack{D \in \operatorname{Div}(C / K) \\ D \geq 0}} \frac{1}{\|D\|^{s}}=\sum_{\substack{D \in \operatorname{Div}(C / K) \\ D \geq 0}} q^{-(\operatorname{deg} D) \cdot s}
$$

Remark: S a finite set of points of $C(\bar{K}), \mathcal{O}_{S}$ is a Dedekind domain.

$$
\zeta_{\mathcal{O}_{S}}(s)=\zeta_{C}(s)=\prod_{P \in S}\left(1-\frac{1}{q^{a_{P} \cdot s}}\right)
$$

Theorem 1.2 (1) Functional equation:

$$
\zeta_{C}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $P(z) \in \mathbb{Z}[z]$ of degree $2 g . P(z)$ satisfied $P(z)=q^{g} z^{2 g} P\left(\frac{1}{q z}\right)$.
(2) (Analytic Class Number Formula) $P(0)=1, P(1)=h_{C}$, where h_{C} is the class number of the curve. From this and (1) we immediately get

$$
\lim _{s \rightarrow 0} s \zeta_{C}(s)=\frac{h_{C}}{(q-1) \log (q)}
$$

(3) (Riemann Hypothesis) All roots of $P(z)$ have $|\alpha|=\sqrt{q}$ (hard except for elliptic curves).

In general, if X is a smooth projective variety of $\operatorname{dim} d$

$$
\zeta_{X}(s)=\frac{P_{1}\left(q^{-s}\right) P_{3}\left(q^{-s}\right) \cdots P_{2 d-1}\left(q^{-s}\right)}{P_{0}\left(q^{-s}\right) P_{2}\left(q^{-s}\right) \cdots P_{2 d}\left(q^{-s}\right)} .
$$

$P_{i}(z)$ has roots of $|\alpha|=\sqrt{q}^{i} .($ HARD $)$
Say E / \mathbb{F}_{q} is an elliptic curve. Then $a=\# E\left(\mathbb{F}_{q}\right)-q-1$.

$$
\zeta_{E}(s)=\frac{1-a_{q}^{-s}+q^{1-2 s}}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

We'll show $|a|<2 \sqrt{q} . P(z)=1-a z+q z^{2}, a^{2}-2 q<0$ so P has complex roots. So same $|\alpha|=|\beta|=\sqrt{q}$.

