Algebraic Number Theory Notes Lecture 38

Notes by Gregory Cousins

April 25, 2014

We continue from last time: $q=p^{r}$ for p a prime, $K=\mathbb{F}_{q}$, and \mathcal{C} a smooth projective curve over K. Recall that

$$
\operatorname{Div}(\mathcal{C} / K)=\left\{\sum\left(n_{p}[p]\right): \forall \sigma \in G_{K}, n_{p}=n_{\sigma(p)}\right\}
$$

and that for all $n \in \mathbb{N}$,

$$
|\{D \in \operatorname{Div}(\mathcal{C} / K):\|D\|<n\}|<\infty
$$

where $\|D\|=q^{\operatorname{deg}(D)}$. Recall also that $\operatorname{Pic}^{0}(\mathcal{C} / K)$ is finite with $h_{\mathcal{C}}$ many elements. We define the define the following zeta function associated to \mathcal{C} :

$$
\zeta_{\mathcal{C}}(s)=\sum_{\substack{D \geq 0 \\ D \in \operatorname{Div}(\mathcal{C} / K)}} \frac{1}{\|D\|^{s}}
$$

Our goal is to prove the following theorem about $\zeta_{\mathcal{C}}$:
Theorem 1. 1. There is a polynomial $P(z) \in \mathbb{Z}[z]$ of degree $2 g$ satisfying

$$
P(z)=q^{g} z^{2 g} P\left(\frac{1}{q z}\right)
$$

and such that

$$
\zeta_{\mathcal{C}}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

2. $P(0)=1$ and $P(1)=h_{\mathcal{C}}$ and so with part 1. we get immediately that

$$
\lim _{s \rightarrow \infty} s \zeta_{\mathcal{C}}(s)=\frac{h_{\mathcal{C}}}{(q-1)(\log (q))}
$$

The proof extensively uses Riemann-Roch:

$$
\mathcal{L}(D)=\{f \in \bar{K}(\mathcal{C}): \operatorname{div}(f) \geq-D\}
$$

and

$$
l(D)-l\left(K_{\mathcal{C}}-D\right)=\operatorname{deg}(D)-g+1
$$

In particular, if $\operatorname{deg}(D)>2 g-2$ then

$$
\begin{equation*}
\operatorname{dim}(\mathcal{L}(D))=\operatorname{deg}(D)-g+1 \tag{1}
\end{equation*}
$$

Proof of Theorem 1. Observe that we can write $\zeta_{\mathcal{C}}(s)$ as follows:

$$
\zeta_{\mathcal{C}}(s)=\sum_{D \geq 0} q^{-\operatorname{deg}(D) s}=\sum_{d=0}^{\infty} \sum_{\substack{D \geq 0 \\ \operatorname{deg}(\bar{D})=d}} q^{-d s}
$$

Recall from last time that there exists $u \in \operatorname{Div}(\mathcal{C} / K)$ with $\operatorname{deg}(u)=1$ and so we can rewrite the above equation as

$$
\zeta_{\mathcal{C}}(s)=\sum_{d=0}^{\infty} \sum_{\substack{D \geq 0 \\ \operatorname{deg}(D-d u)=0}} q^{-d s}
$$

Since $D-d u \in \operatorname{Div}^{0}(\mathcal{C} / K)$ and $\operatorname{Div}^{0}(\mathcal{C} / K)$ projects onto $\operatorname{Pic}^{0}(\mathcal{C} / K)=\left\{\alpha_{1}, \ldots, \alpha_{h_{\mathcal{C}}}\right\}$ which is finite, we can futher rewrite this as

$$
\begin{aligned}
\zeta_{\mathcal{C}}(s) & =\sum_{d \geq 0} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{\substack{D \geq 0 \\
D-d u=\alpha \in \operatorname{Pic}^{0}}} q^{-d s} \\
& =\sum_{d \geq 0} q^{-d s} \underbrace{\left(\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{\substack{D \geq 0 \\
D-d u=\alpha \in \operatorname{Pic}^{0}}} 1\right)}_{\text {Summing over the representative classes } \alpha \in \operatorname{Pic}^{0}}
\end{aligned}
$$

Now, let's try to compute $\left|\left\{D \geq 0: D-d u=\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)\right\}\right|$:
If $D-d u=\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)$, then

$$
D-d u=\alpha+\operatorname{div}(f)
$$

for some function f. Then $D=d u+\alpha+\operatorname{div}(f)$ and so

$$
\begin{aligned}
\left|\left\{D \geq 0: D-d u=\alpha \in \operatorname{Pic}^{0}\right\}\right| & =|\{\operatorname{div}(f): \underbrace{d u+\alpha+\operatorname{div}(f)}_{D} \geq 0\}| \\
& =|\{\operatorname{div}(f): \operatorname{div}(f) \geq-(d u+\alpha)\}| \\
& =|\{\operatorname{div}(f): f \in \underbrace{\mathcal{L}(d u+\alpha)}_{\text {considered as a vector space over } K}\}|
\end{aligned}
$$

Recall that the map div : $\bar{K}(\mathcal{C})^{\times} \rightarrow \operatorname{Div}(\mathcal{C} / K)$ has kernel $\operatorname{ker}(\operatorname{div})=\bar{K}^{\times}$and so, by the first isomorphism theorem and the fact that $\mathcal{L}(d u+\alpha)$ is an $l(d u+\alpha)$-dimensional K-vector space, we get that

$$
\begin{aligned}
|\{\operatorname{div}(f): f \in \mathcal{L}(d u+\alpha)\}| & =\frac{\left|K^{l(d u-\alpha)}-\{0\}\right|}{|K-\{0\}|} \\
& =\frac{q^{l(d u+\alpha)}-1}{q-1}
\end{aligned}
$$

and we can use Riemann-Roch to find $l(d u+\alpha)$. Using this fact, we can write

$$
\zeta_{\mathcal{C}}(s)=\sum_{D \geq 0} q^{-d s}\left(\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{\substack{D \geq 0 \\ D-d u=\alpha \in \operatorname{Pic}^{0}}} 1\right)
$$

$$
=\sum_{d \geq 0} q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}
$$

and by Riemann-Roch,

$$
\begin{aligned}
\zeta_{\mathcal{C}}(s) & =\sum_{d=0}^{2 g-2}\left(q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}\right)+\sum_{d \geq 2 g-1} q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{d-g+1}-1}{q-1} \\
& =\sum_{d=0}^{2 g-2}\left(q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}\right)+\frac{h_{\mathcal{C}}}{q-1} \sum_{d \geq 2 g-1}\left(q^{1-g} q^{(1-s) d}-q^{-s d}\right) \\
& =\sum_{d=0}^{2 g-2}\left(q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}\right)+\frac{h_{\mathcal{C}}}{q-1}\left(\frac{q^{1-g+(1-s)(2 g-1)}}{1-q^{1-s}}-\frac{q^{-s(2 g-1)}}{1-q^{-s}}\right) \\
& =\sum_{d=0}^{2 g-2}\left(Z^{d} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}\right)+\frac{h_{\mathcal{C}} Z^{2 g-1}}{(1-Z)(1-q Z)} \frac{\left(q^{g}-1\right)-q\left(q^{g-1}-1\right) Z}{q-1}
\end{aligned}
$$

where we denoted $Z=q^{-s}$. It is now clear that $P(Z)=\zeta_{C}(s)(1-Z)(1-q Z)$ is a polynomial of degree $2 g$ and has integral coefficients.

To prove the functional equation for $P(Z)$ we rewrite the above computation as follows (again using the notation $\left.Z=q^{-s}\right)$:

$$
\begin{aligned}
\zeta_{\mathcal{C}}(s) & =\sum_{d=0}^{2 g-2}\left(q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}-1}{q-1}\right)+\frac{h_{\mathcal{C}}}{q-1} \sum_{d \geq 2 g-1}\left(q^{1-g} q^{(1-s) d}-q^{-s d}\right) \\
& =\sum_{d=0}^{2 g-2}\left(q^{-d s} \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \frac{q^{l(d u+\alpha)}}{q-1}\right)+\frac{h_{\mathcal{C}}}{q-1} \sum_{d \geq 2 g-1} q^{1-g} q^{(1-s) d}-\frac{h_{\mathcal{C}}}{q-1} \sum_{d \geq 0} q^{-s d} \\
& =\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{d=0}^{2 g-2} Z^{d} \frac{q^{l(d u+\alpha)}}{q-1}+\frac{h_{\mathcal{C}}}{q-1}\left(\frac{q^{1-g+(1-s)(2 g-1)}}{1-q^{1-s}}-\frac{1}{1-q^{-s}}\right) \\
& =\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{d=0}^{2 g-2} Z^{d} \frac{q^{l(d u+\alpha)}}{q-1}+\frac{h_{\mathcal{C}}}{q-1}\left(\frac{q^{g} Z^{2 g-1}}{1-q Z}-\frac{1}{1-Z}\right) \\
& =\frac{(1-Z)(1-q Z) \sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{d=0}^{2 g-2} Z^{d} \frac{q^{l(d u+\alpha)}}{q-1}+\frac{h_{\mathcal{C}}}{q-1}\left(q^{g} Z^{2 g-1}(1-Z)-(1-q Z)\right)}{(1-Z)(1-q Z)}
\end{aligned}
$$

We now study the functional equation satisfied by the numerator:

$$
P(z)=(1-q z)(1-z)\left(\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} \sum_{d=0}^{2 g-2} z^{d} \frac{q^{l(d u+\alpha)}}{q-1}\right)+\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left(q^{g} z^{2 g-1}(1-z)-(1-q z)\right)
$$

which, as we remarked above, is a polynomial $P(z) \in \mathbb{Z}[z]$ of degree $2 g$. Now,

$$
P(0)=\lim _{s \rightarrow \infty} P\left(q^{-s}\right)
$$

$$
\begin{aligned}
& =\lim _{s \rightarrow \infty} \zeta_{\mathcal{C}}(s) \underbrace{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}_{\rightarrow 1 \text { as } s \rightarrow \infty} \\
& =\lim _{s \rightarrow \infty} \sum_{\substack{D \geq 0 \\
D \in \operatorname{Div}(\mathcal{C} / K)}} \frac{1}{\|D\|^{s}} \\
& =\lim _{s \rightarrow \infty}\left(1+\sum_{\substack{D>0 \\
D \in \operatorname{Div}(\mathcal{C} / K)}} \frac{1}{\|D\|^{s}}\right) \\
& =1
\end{aligned}
$$

which is what we wanted. Furthermore, it is clear that

$$
P(1)=\frac{h_{\mathcal{C}}}{q-1}(-(1-q))=h_{\mathcal{C}}
$$

At this point, we only need to show that $P(z)$ satisfies

$$
\begin{equation*}
P(z)=q^{g} z^{2 g} P\left(\frac{1}{q z}\right) . \tag{2}
\end{equation*}
$$

We show this for $P(z)$ by showing it is true for fragments: Let

$$
B(z)=\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left(q^{g} z^{2 g-1}(1-z)-(1-q z)\right)
$$

the last part of $P(z)$. We want to show that $B(z)$ satisfies 2 . Substituting, we get

$$
\begin{aligned}
B\left(\frac{1}{q z}\right) & =\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left(q^{g}(q z)^{-2 g+1}\left(\frac{q z-1}{q z}\right)-\left(\frac{z-1}{z}\right)\right) \\
& =\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left(q^{-g+1} z^{-2 g+1}\left(\frac{q z-1}{q z}\right)-\left(\frac{z-1}{z}\right)\right) \\
& =\left(\frac{h_{\mathcal{C}}}{q-1}\right) q^{-g} z^{-2 g}\left(q z\left(\frac{q z-1}{q z}\right)-q^{g} z^{2 g}\left(\frac{z-1}{z}\right)\right) \\
& =q^{-g} z^{-2 g}\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left((q z-1)-q^{g} z^{2 g-1}(z-1)\right) \\
& =q^{-g} z^{-2 g}\left(\frac{h_{\mathcal{C}}}{q-1}\right)\left(-(1-q z)+q^{g} z^{2 g-1}(1-z)\right) \\
& =q^{-g} z^{-2 g} B(z)
\end{aligned}
$$

as required. For each $\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)$, let

$$
A_{\alpha}(z)=\frac{(1-q z)(1-z)}{q-1} \sum_{d=0}^{2 g-2} q^{l(d u+\alpha)} z^{d}
$$

We claim that there is $\beta \in \operatorname{Pic}^{0}(\mathcal{C} / K)$ such that for each $\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)$, we have

$$
A_{\alpha}(z)=q^{g} z^{2 g} A_{(\beta-\alpha)}\left(\frac{1}{q z}\right)
$$

If this claim holds, then since the map $\alpha \mapsto(\beta-\alpha)$ is a permutation of $\operatorname{Pic}^{0}(\mathcal{C} / K)$, the sum

$$
\sum_{\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)} A_{\alpha}(z)
$$

satisfies 2 and so we will be done. Substituting as we did for $B(z)$,

$$
\begin{aligned}
q^{g} z^{2 g} A_{\alpha}\left(\frac{1}{q z}\right) & =\frac{q^{g} z^{2 g}}{q-1}\left(\frac{q z-1}{q z}\right)\left(\frac{z-1}{z}\right) \sum_{d=0}^{2 g-2} \frac{q^{l(d u+\alpha)}}{q^{d} z^{d}} \\
& =\frac{q^{g-1} z^{2 g-2}}{q-1}(q z-1)(z-1) \sum_{d=0}^{2 g-2} \frac{q^{l(d u+\alpha)}}{q^{d} z^{d}} \\
& =\frac{(1-q z)(1-z)}{q-1} \sum_{d=0}^{2 g-2} q^{l(d u+\alpha)} q^{g-1-d} z^{2 g-2-d}
\end{aligned}
$$

Now, setting $d=2 g-2-d$ and summing the other way around, we get

$$
\begin{equation*}
q^{g} z^{2 g} A_{\alpha}\left(\frac{1}{q z}\right)=\frac{(1-q z)(1-z)}{q-1} \sum_{d=0}^{2 g-2} q^{l((2 g-2-d) u+\alpha)} q^{d-g+1} z^{d} \tag{3}
\end{equation*}
$$

Here, recall that $\operatorname{deg}\left(K_{\mathcal{C}}\right)=2 g-2$ and so $K_{\mathcal{C}}-(2 g-2) u=\beta$ some fixed element in $\operatorname{Pic}^{0}(\mathcal{C} / K)$. By Riemann-Roch,

$$
l(D)-l\left(K_{\mathcal{C}}-D\right)=\operatorname{deg}(D)-g+1
$$

and so for each $\alpha \in \operatorname{Pic}^{0}(\mathcal{C} / K)$,

$$
\begin{aligned}
l((2 g-2-d) u+\alpha)-l(\beta+(2 g-2) u-(2 g-2-d) u-\alpha) & =2 g-2-d-g+1 \\
& =g-1-d
\end{aligned}
$$

Therefore,

$$
l((2 g-2-d) u+\alpha)=l(d u+\beta-\alpha)+g-1-d
$$

Substituting this into 3 we get

$$
\begin{aligned}
q^{g} z^{2 g} A_{\alpha}\left(\frac{1}{q z}\right) & =\frac{(1-q z)(1-z)}{q-1} \sum_{d=0}^{2 g-2} q^{l((d u+(\beta-\alpha))+g-1-d} q^{d-g+1} z^{d} \\
& =\frac{(1-q z)(1-z)}{q-1} \sum_{d=0}^{2 g-2} q^{l((d u+(\beta-\alpha))} z^{d} \\
& =A_{(\beta-\alpha)}(z)
\end{aligned}
$$

which proves the claim. This completes the proof.

