

If the protons and neutrons in this picture were 10 cm across, then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

Chapter 2

ATOMIC STRUCTURE AND INTERATOMIC BONDING

INTERATOMIC BONDS

Comparison of Different Atomic Bonds

	Typical Solids	Bond Energy eV/atom	Melt. Temp. (°C)	Elastic Modulus (GPa)	Density (g cm ⁻³)	Typical Properties
Ionic	NaCl, (rock salt) MgO, (magnesia)	3.2 10	801 2852	40 250	2.17 3.58	Generally electrical insulators. May become conductive at high temperatures. High elastic modulus. Hard and brittle but cleavable. Thermal conductivity less than metals
Metallic	Cu Mg	3.1 1.1	1083 650	120 44	8.96 1.74	Electrical conductor. Good thermal conduction. High elastic modulus. Generally ductile. Can be shaped.
Covalent	Si C (diamond)	4 7.4	1410 3550	190 827	2.33 3.52	Large elastic modulus. Hard and brittle. Diamond is the hardest material. Good electrical insulator. Moderate thermal conduction, though diamond has exceptionally high thermal conductivity.
van der Waals: Hydrogen bonding	PVC, (polymer) H ₂ O, (ice)	0.52	212 0	4 9.1	1.3 0.917	Low elastic modulus. Some ductility. Electrical insulator. Poor thermal conductivity. Large thermal expansion coefficient.
van der Waals: Induced dipole	Crystalline Argon	0.09	-189	8	1.8	Low elastic modulus. Electrical insulator. Poor thermal conductivity. Large thermal expansion coefficient.

INTERATOMIC BONDS (1)

Bonding: Molecules

INTERATOMIC BONDS (2)

 F_A – attractive force is defined by the nature of the bond (e.g. Coulomb force for the ionic bonding)

 F_R – atomic repulsive force, when electron shells start to overlap

Thus the net force $\mathbf{F}_{N}(\mathbf{r}) = \mathbf{F}_{A} + \mathbf{F}_{R}$ In equilibrium: $\mathbf{F}_{N}(\mathbf{r}_{0}) = \mathbf{F}_{A} + \mathbf{F}_{R} = \mathbf{0}$

Let us consider the same conditions

but in the term of potential energy, E.

By definition:

 $E = \int F dr$ $E_N = \int_{\infty}^{r} F_N dr = \int_{\infty}^{r} F_A dr + \int_{\infty}^{r} F_R dr = E_A + E_R$ if $F_N = 0$ $\frac{dE_N}{dr} = 0 \Rightarrow E_N$ has extremum more specifical ly at $r = r_0$, $F_N = 0$, system in equilibrium and E_N possesses minimum

ELASTIC DEFORMATION

Stress Versus Strain: Elastic Deformation

Typical Stress-Strain Diagram for one-dimensional tensile test

Elastic Region

E [N/m^{2;} GPa] is **Young's modulus** or **modulus of elasticity**

PROPERTIES FROM BONDING: E (1)

Bond length, r

• Elastic modulus, E

• Bond energy, Uo

```
Energy (r) = U(r)
```


Elaștic modulus

PROPERTIES FROM BONDING: E (2)

• Elastic modulus, E

Elaștic modulus

$$\frac{F}{A_0} = E \frac{\Delta L}{L_0}$$

Atomic Mechanism of Elastic Deformation

Weaker bonds – the atoms easily move out from equilibrium position

PROPERTIES FROM BONDING: E (3)

• Elastic modulus, E cross

Modulus of Elasticity for Different Metals

Young's modulus

Young's modulus is a numerical constant, named for the 18th-century English physician and physicist <u>Thomas Young</u>, that describes the elastic properties of a solid undergoing tension or compression in only one direction.

Higher E – higher "stiffness"

YOUNG'S MODULI: COMPARISON

Eceramics > Emetals >> Epolymers

Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers.

HOT TOPIC

PHYSICAL REVIEW B 85, 144117 (2012)

Site preference and effect of alloying on elastic properties of ternary B2 NiAl-based alloys

A. V. Ponomareva,^{1,*} E. I. Isaev,^{1,2} Yu. Kh. Vekilov,¹ and I. A. Abrikosov²

¹Theoretical Physics and Quantum Technology Department, National University of Science and Technology MISIS, RU-119049 Moscow, Russia

²Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden (Received 14 October 2011; revised manuscript received 18 March 2012; published 25 April 2012)

Using the exact muffin-tin orbitals method in conjunction with the coherent potential approximation, we study the site preference of transition metal impurities X (X = Sc, Ti, V, Cr, W, Re, Co) in B2 NiAl and their effect on its elastic properties. Analyzing interatomic bonding of NiAl-X alloys and elastic characteristics evaluated from the elastic constants C_{11} , C_{12} , and C_{44} , we predict that the addition of W, V, Ti, and Re atoms could yield improved ductility for B2 NiAl-X alloys without significant changes in the macroscopic elastic moduli.

TABLE III. Calculated lattice parameters (*a*), elastic constants (C_{11} , C_{12} , C_{44}), bulk moduli (*B*), Young moduli (*E*), shear moduli (*G*), and Zener anisotropy parameters (A_z) of NiAl-based alloys. For NiAl-Cr alloys we consider only the paramagnetic state in the disordered local moments approach.

	a (Å)	<i>C</i> ₁₁ (GPa)	<i>C</i> ₁₂ (GPa)	C ₄₄ (GPa)	B (GPa)	E (GPa)	G (GPa)	Az
NiAl	2.89	233	121	114	159	218	85	2.1
(Re ₁₀ Ni ₉₀)Al (ResoNiso)Al	2.92	230 232	124 154	121	159 180	220 216	87 83	2.3
$(W_{05}Al_{95})(W_{05}Ni_{95}) (W_{25}Al_{75})(W_{25}Ni_{75})$	2.92 3.00	232 234 241	132 154	117 128	166 183	215 217	84 83	2.3 3.0
$\begin{array}{l}(V_{05}Al_{95})(V_{05}Ni_{95})\\(V_{10}Al_{90})(V_{10}Al_{90})\end{array}$	2.91	223	125	113	158	207	81	2.3
	2.92	218	128	112	158	200	77	2.5
(Ti ₁₀ Al ₉₀)Ni	2.91	234	121	110	159	214	84	1.9
(Ti ₅₀ Al ₅₀)Ni	2.96	223	126	88	159	182	70	1.8
(Sc ₁₀ Al ₉₀)Ni	2.93	224	114	103	150	203	80	1.9
(Sc ₅₀ Al ₅₀)Ni	3.04	196	94	71	128	160	64	1.4
(Co ₁₀ Ni ₉₀)Al	2.89	235	123	117	161	221	87	2.1
(Co ₈₀ Ni ₂₀)Al	2.86	268	127	135	174	260	104	2.1
$\begin{array}{c} (Cr_{05}Al_{95})(Cr_{05}Ni_{95}) \\ (Cr_{15}Al_{85})(Cr_{15}Ni_{85}) \end{array}$	2.90	224	122	115	156	212	83	2.2
	2.91	213	119	116	151	210	81	2.5
(Cr ₅₀ Ni ₅₀)Al	2.96	189	108	120	135	196	78	3.0
(Cr ₅₀ Al ₅₀)Ni	2.90	195	138	120	157	178	68	4.2

PROPERTIES FROM BONDING: α

 ΔL

Lo

- Coefficient of thermal expansion, α

 α is larger if U_o is smaller.

coeff. thermal expansion

 $= \stackrel{\checkmark}{\alpha} (\mathsf{T}_2 - \mathsf{T}_1)$

material	CTE (ppm/°C)
silicon	3.2
alumina	6–7
copper	16.7
tin-lead solder	27
E-glass	54
S-glass	16
epoxy resins	15-100
silicone resins	30-300

α ~ symmetry at r_o

Relationships between properties

Expansion coefficient and melting point

Engineering materials – the same dependence

PROPERTIES FROM BONDING: T_M

Melting Temperature, Tm

Energy (r)

The **melting point** of a solid is the temperature at which it **changes state from solid to liquid** at atmospheric pressure. At the melting point the solid and liquid phase exist *in equilibrium*.

The **Lindemann criterion** states that melting is expected when the root mean square vibration amplitude exceeds a threshold value. Assuming that all atoms in a crystal vibrate with the same frequency v, the average thermal energy can be estimated using the equipartition theorem:

 $E = 4\pi^2 m\nu^2 \ u^2 = k_B T$

where *m* is the atomic mass, *v* is the frequency, *u* is the average vibration amplitude, k_B is the Boltzmann constant, and *T* is the absolute temperature If the threshold value of u^2 is c^2a^2 where *c* is the **Lindemann** constant and *a* is the atomic spacing, then the melting point is estimated as

$$T_m = \frac{4\pi^2 m\nu^2 c^2 a^2}{k_B}.$$

T_m is larger if U_o is larger

*DNA melting temperature

The T_m is defined as the temperature in degrees Celsius, at which 50% of all molecules of a given DNA sequence are hybridized into a double strand and 50% are present as single strands.

Note that 'melting' in this sense is not a change of aggregate state, but simply the dissociation of the two molecules of the DNA double helix.

Relationships between properties

Modulus and melting point

Engineering materials – the same dependence

SUMMARY: PRIMARY BONDS

Ceramics

(lonic & covalent bonding):

Metals (Metallic bonding): Large bond energy large Tm large E small α

Variable bond energy moderate T_m moderate E moderate α

Polymers

(Covalent & Secondary):

Directional Properties Secondary bonding dominates small T small E large α

SUMMARY: BONDING

Type Bond Energy

Ionic

Large!

Comments

Nondirectional (ceramics)

Covalent

large-Diamond small-Bismuth

Variable

Directional (semiconductors, ceramics polymer chains)

Metallic

Variable large-Tungsten small-Mercury

Nondirectional (metals)

Directional inter-chain (polymer) inter-molecular

Secondary

smallest