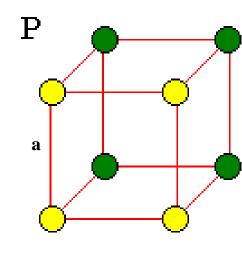
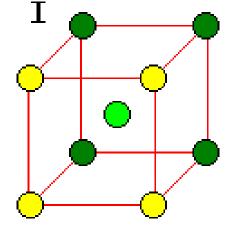
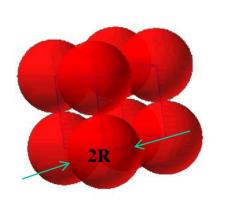


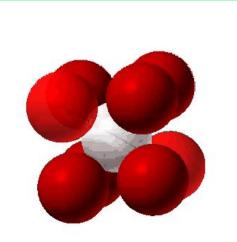
CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

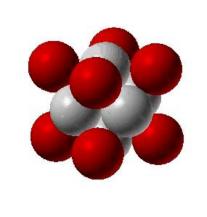


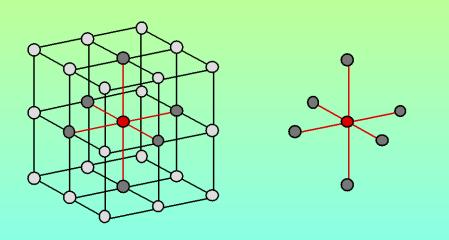

Metallic Crystals


- tend to be densely packed.
- have several reasons for dense packing:
 - -Typically, only one element is present, so all atomic radii are the same.
 - -Metallic bonding is not directional.
 - -Nearest neighbor distances tend to be small in order to lower bond energy.
- have the simplest crystal structures.


We will look at three such structures...


Cubic Unit Cells



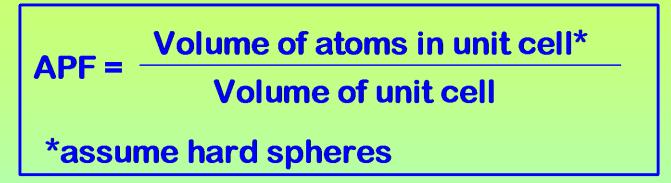


SIMPLE CUBIC STRUCTURE (SC)

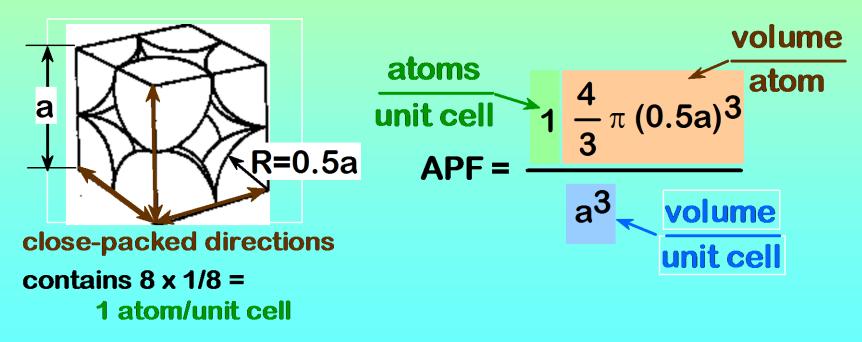
BODY CENTERED CUBIC STRUCTURE (BCC) FACE CENTERED CUBIC STRUCTURE (FCC)

Simple Cubic (SC) Structure

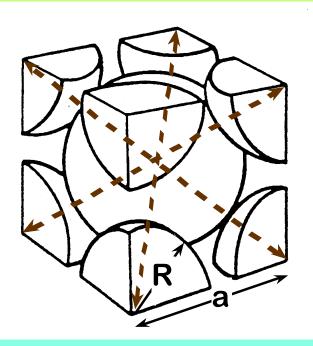
- Coordination number is the number of nearest neighbors
- Linear density (LD) is the number of atoms per unit length along a specific crystallographic direction



Coordination number = 6

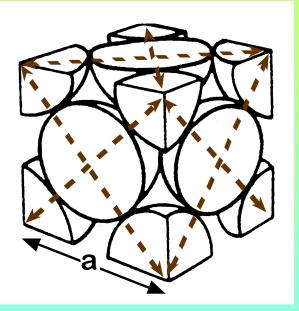

 $LD_{110} = 1 \text{ atoms}/2\sqrt{2} R$ $LD_{100} = 1 \text{ atoms}/2R$

- Rare due to poor packing (only Po [84] has this structure)
- Close-packed directions are cube edges.

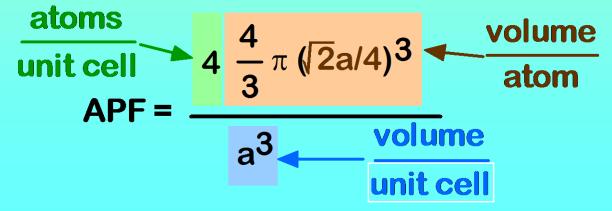

Atomic Packing Factor (APF)

• APF for a simple cubic structure = 0.52

Body Centered Cubic (BCC) Structure

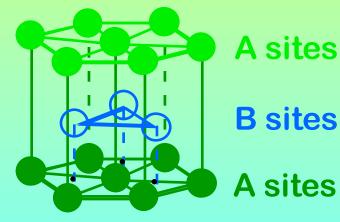


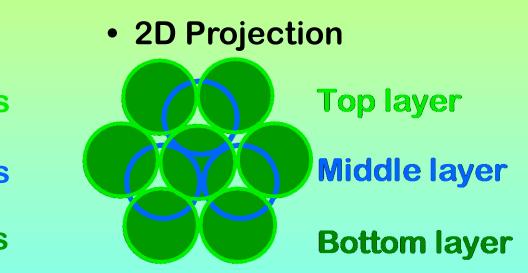
- **Coordination number** = 8
- Close packed directions are cube diagonals:
- $LD_{110} = 1 \text{ atom}/(4R\sqrt{(2/3)}) = 1/(2R\sqrt{8/3})$ $LD_{001} = 1 \text{ atom}/(4R/\sqrt{3})) = 1/(2R\sqrt{4/3})$ $LD_{111} = 2 \text{ atoms}/4R = 1/(2R)$
- Unit cell contains: 1 + 8 x 1/8 = 2 atoms/unit cell


• **APF** =
$$0.68$$
:

atoms
unit cell 2
$$\frac{4}{3}\pi (\sqrt{3}a/4)^3$$
 volume
APF = $a^3 \sqrt{volume}$
unit cell $a^3 \sqrt{volume}$
unit cell

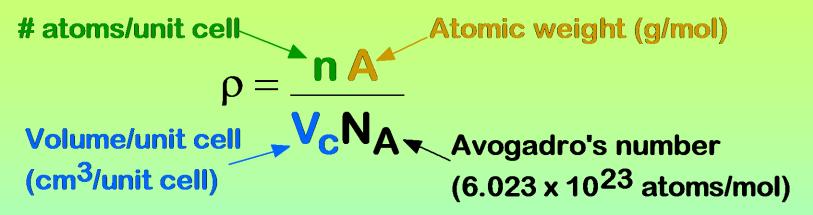
Face-Centered Cubic (FCC) Structure




- **Coordination number** = 12
- Close packed directions are face diagonals:
- $LD_{110} = 2 \text{ atom}/(4R) = 1/2R$
- $LD_{001} = 1 \text{ atom}/(2R\sqrt{2}) = 1/(2R\sqrt{2})$
- $LD_{111} = 1 \text{ atoms}/4R = 1/(2R \sqrt{6})$
- Unit cell contains: 6 x 1/2 + 8 x 1/8 = 4 atoms/unit cell
 - **APF** = 0.74

Hexagonal Close-Packed (HCP) Structure

- ABAB... Stacking Sequence
- 3D Projection



- Coordination number = ?
- APF = ?

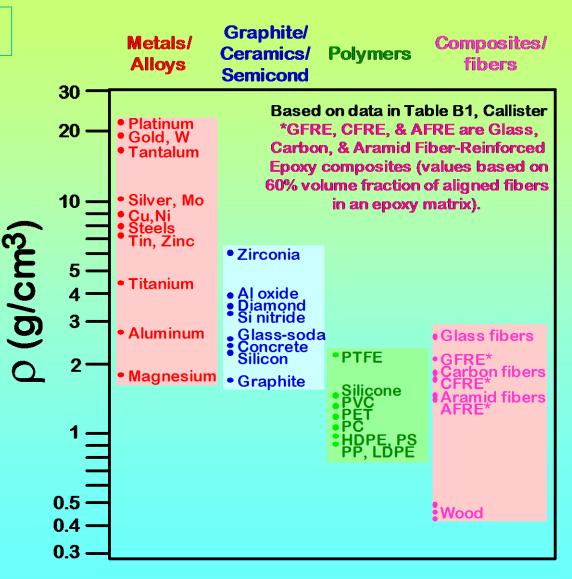
Characteristics of Selected Elements at 20C

		At. Weight	Density	Crystal	Atomic radius
Element	Symbol	(amu)	(g/cm ³)	Structure	(nm)
Aluminum	AI	26.98	2.71	FCC	0.143
Argon	Ar	39.95			
Barium	Ba	137.33	3.5	BCC	0.217
Beryllium	Be	9.012	1.85	НСР	0.114
Boron	В	10.81	2.34	Rhomb	
Bromine	Br	79.90			
Cadmium	Cd	112.41	8.65	НСР	0.149
Calcium	Ca	40.08	1.55	FCC	0.197
Carbon	С	12.011	2.25	Hex	0.071
Cesium	Cs	132.91	1.87	BCC	0.265
Chlorine	CI	35.45			
Chromium	Cr	52.00	7.19	BCC	0.125
Cobalt	Со	58.93	8.9	НСР	0.125
Copper	Cu	63.55	8.94	FCC	0.128
Flourine	F	19.00			
Gallium	Ga	69.72	5.90	Ortho.	0.122
Germanium	Ge	72.59	5.32	Dia. cubic	0.122
Gold	Au	196.97	19.32	FCC	0.144
Helium	He	4.003			
Hydrogen	Н	1.008			

Theoretical Density, p

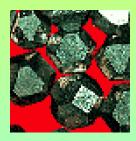
Example: Copper

- crystal structure FCC
- # atoms/unit cell = 4
- atomic weight = **63.55 g/mol**
- atomic radius R = **0.128 nm**
- for FCC $\mathbf{a} = 2\mathbf{R}\sqrt{2}$; $V_c = a^3$; $V_c = 4.75 \ 10^{-23} \ \text{cm}^3$


Result: theoretical ρ_{Cu} = 8.89 g/cm³ Compare to actual: ρ_{Cu} = 8.94 g/cm³

Densities of Materials Classes

 $\rho_{\text{metal}} > \rho_{\text{ceramics}} > \rho_{\text{polymers}}$


Why? Metals have...

- close-packing (metallic bonding)
- large atomic mass Ceramics have...
 - less dense packing (covalent bonding)
- often lighter elements Polymers have...
 - poor packing (often amorphous)
- lighter elements (C,H,O)
 Composites have...
 - intermediate values

CRYSTALS AS BUILDING BLOCKS

• *Some* engineering applications require single crystals:

diamond single crystals for abrasives

turbine blades

- Crystal properties reveal features of atomic structure.
 - Ex: Certain crystal planes in quartz fracture more easily than others.

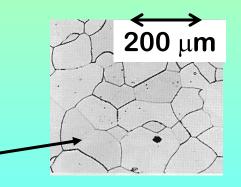
POLYCRYSTALS

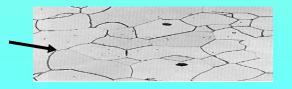
• *Most* engineering materials are polycrystals.

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

SINGLE VS POLYCRYSTALS

- Single Crystals


 Properties vary with
 direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:


Polycrystals

- -Properties may/may not vary with direction.
- -If grains are randomly oriented: isotropic. _ (E_{poly iron} = 210 GPa)
- -If grains are textured, anisotropic.

E (edge) = 125 GPa

E (diagonal) = 273 GPa

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.