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A surf zone model is developed and tested based on the Oðl4Þ Boussinesq–Green–Naghdi system of
Zhang et al. (2013). Because the model is fundamentally rotational, it uses fewer ad hoc assumptions than
are found in many Boussinesq breaking wave systems. Eddy viscosity is used to describe both breaking
dissipation and bottom friction, with breaking viscosities derived from the turbulent kinetic energy equa-
tion coupled with an Oðl4Þ rotational wave model. In contrast, bottom friction is included by imposing
the frictional coefficient-derived boundary stress as an equivalent eddy viscosity. Numerical tests for
one horizontal dimension show good agreement with regular and irregular wave breaking tests, and
for solitary wave runup. Surface elevation decay, setup, runup, interior orbital velocities, and depth-vary-
ing undertow velocities can all be modeled reasonably. Comparison with an Oðl2Þ system shows similar
performance for water surface elevations in the surf zone, demonstrating that the dissipation model is
the major controlling factor. However, the Oðl4Þ model shows significantly improved representations
of the velocity profile in the surf zone, as expected.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Boussinesq-scaled water wave models give a phase resolving
approximation of nearshore wave dynamics with good computa-
tional efficiency and application range. Classic depth-averaged
Boussinesq theory for varying depth was introduced by Peregrine
(1967), but has seen strong improvements in accuracy and range
of application over the past 2 decades (Madsen and Sørensen,
1992; Nwogu, 1993; Wei et al., 1995; Kennedy et al., 2001;
Madsen and Schäffer, 1998; Gobbi and Kirby, 1999; Gobbi et al.,
2000; Lynett and Liu, 2002). Extensions to include wave breaking
and moving shorelines were introduced into previously inviscid
Boussinesq models that allowed them to simulate surf zone
dynamics such as wave evolution, wave setup, and large scale
wave-induced currents such as rip currents, and longshore cur-
rents. These have created systems that have provided good results
for a variety of studies (e.g. Schäffer and Madsen, 1993; Sørensen
et al., 1998; Chen et al., 2000; Kennedy et al., 2000a,b; Lynett
et al., 2002; Musumeci et al., 2005; Nwogu and Demirbilek,
2010; Bonneton et al., 2011; Kim and Lynett, 2013).
However, most Boussinesq models feature partial or full irrota-
tionality assumptions for orbital velocities. While reasonable for
nonbreaking waves, these assumptions are strongly violated under
wave breaking in the surf zone. Rotational scaling has been intro-
duced to some Boussinesq models with additional formulations for
vorticity evolution (Veeramony and Svendsen, 2000; Musumeci
et al., 2005; Kim and Lynett, 2013). These can give good results,
but none of these approaches has been widely adopted, which is
significant as surf zone simulations require the inclusion of vortic-
ity to provide accurate reconstructions of internal velocities. For
most quasi-irrotational Boussinesq models, there are two common
breaking techniques. The first is the ad hoc eddy viscosity formula-
tion originally developed by Zelt (1991), and extended by Kennedy
et al. (2000a) that yields extra viscous terms in momentum equa-
tions leading to wave dissipation. Dissipative terms have in some
instances also been introduced into mass equations (Cienfuegos
et al., 2010; Klonaris et al., 2013). The second technique is the sur-
face roller approach attributed to Schäffer and Madsen (1993)
based on the flux version of Boussinesq equations. This approach
evolved from the roller concept introduced by Svendsen (1984)
and was further developed by Madsen et al. (1997). Both eddy
viscosity and surface roller techniques are of comparable accuracy.
A third, more recent, approach turns off dispersive terms in the
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vicinity of the breaking roller and allows the dissipative nature of
shallow water bores to remove energy from waves while conserv-
ing momentum (Shi et al., 2012; Tissier et al., 2012; Gallerano at
al., 2014). This shallow water bore approach requires shock-cap-
turing numerical schemes to ensure stability at the bore front
but is relatively simple to implement, as it has few adjustable
parameters other than criteria for switching to shallow water
equations. None of these breaking schemes applied to quasi-irrota-
tional models has well-defined velocities in the vicinity of the
breaker: all assume partially irrotational velocities which is known
to be untrue, and shallow water shock-capturing methods have a
near-discontinuity in velocities at the bore front which leads to
second order velocities being poorly defined.

An alternate but related shallow water wave theory was intro-
duced by Green and Naghdi (1976). Using a polynomial structure
of the velocity profile, the mass and momentum equations were
solved in a weighted residual sense with no irrotationality con-
straint. Rotational Green–Naghdi equations have shown excellent
nonlinear properties and very fast convergence with increasing
numbers of terms in the series (Shields and Webster, 1988; Zhao
et al., 2014b). However, their extreme complexity has generally
confined research efforts to low levels of approximation (e.g.
Ertekin et al., 1986). Although irrotational characteristics and scal-
ing have also been introduced into the Green–Naghdi theory (Kim
et al., 2003), these irrotational formulations hinder their extension
to the surf zone.

In contrast, Zhang et al. (2013) developed a Boussinesq–Green–
Naghdi model that shows a resemblance to both Boussinesq and
Green–Naghdi systems. Polynomial expansions (Shields and
Webster, 1988) and Boussinesq scaling were both applied. The sys-
tems may be extended to higher order and show excellent conver-
gence towards exact solutions for dispersion, shoaling, and orbital
velocities. Most of the asymptotic rearrangement techniques used
for Boussinesq models may also be employed to improve accuracy
for given levels of approximation. Importantly, the partial or com-
plete irrotationality assumption of most Boussinesq systems was
removed so that rotational surf zone flows may be modeled
naturally.

In this paper, we extend the rotational Boussinesq–Green–Nag-
hdi model (Zhang et al., 2013) to the surf zone including wave
breaking and moving shorelines. Due to the rotational nature of
the system, fewer assumptions are needed for vorticity and viscous
terms (also called dissipative/breaking terms). Viscous terms in the
Navier Stokes equation represented as eddy viscosity are kept by
proper scaling to reproduce the energy dissipation under the
breaking wave crest, while the eddy viscosity is modeled by the
depth-integrated turbulent-kinetic-energy equation. The spa-
tially-and-temporally-varying eddy viscosity model is coupled
with the wave model to model rotational flow naturally in the surf
zone. Numerous breaking tests for plunging, spilling and irregular
wave breaking are shown in this paper, with computed results of
surface elevation decay, setup, and depth-varying velocities show-
ing good matches to data. A thin-layer moving shoreline technique
was derived based on Benque’s method (1982) and the breaking
solitary wave runup simulation showed good results. Numerical
tests in this paper were performed with an Oðl4Þ system – this is
quite unusual as most breaking wave systems have used Oðl2Þ
equations. Additional Oðl2Þ runs for comparison purposes demon-
strates the effect of the additional higher order terms on the overall
system accuracy.

Because the Boussinesq class of models will never be able to
simulate the complex free surfaces found in, for example, plunging
breakers, there is an upper limit on accuracy, particularly in the
roller region and near the wave crest. The weakly nonlinear
Oðl4Þ system used here also has its own accuracy limitations. For
these reasons the breaking model will be intermediate in accuracy
and expense between comprehensive Navier–Stokes computa-
tional fluid dynamics models (e.g. Ma et al., 2012; Higuera et al.,
2013), and the much more efficient existing Boussinesq breaking
models that have more parameterized representations of breaking
processes. In particular, the present methods will be able to predict
internal velocities in the surf zone with more accuracy than exist-
ing Boussinesq models, but with lower cost than Navier–Stokes
solvers.
2. Breaking model

2.1. Boussinesq–Green–Naghdi rotational water wave system

It is convenient to put the governing equations and the bound-
ary conditions into dimensionless form. We define the Boussinesq-
shallow water scaling for non-dimensional variables as

ðx;yÞ¼k0ðx�;y�Þ; z¼h�1
0 z�; t¼k0ðg0h0Þ

1
2t�; h¼h�1

0 h�;

g¼ðh0Þ�1g� P¼ðq�g0h0Þ�1P�; g¼g�1
0 g�; ðu;vÞ¼ðg0h0Þ�1=2ðu�;v�Þ;

w¼ðk0h0Þ�1ðg0h0Þ�1=2w� mt¼h�1
0 ðg0h0Þ�1=2ðk0h0Þ�1m�t

sxx¼g�1
0 k�2

0 h�3
0 s�xx; szx¼g�1

0 k�1
0 h�2

0 s�zx ð2:1Þ

where the superscript � indicates dimensional variables, and g� is
gravitational acceleration. Horizontal spatial coordinates are
x� � ðx�; y�Þ, while the vertical coordinate ðz�Þ is oriented positive
upward. Time t� is scaled by typical long wave speed ðg0h0Þ1=2 and
wavenumber k0, while depth h� and surface elevation g� scale with
typical water depth h0. The pressure P� is hydrostatically scaled.
Horizontal and vertical velocities ðu�;v�;w�Þ all scale with wave
orbital velocities taken from shallow water theory. This scaling
assumes that the wave may be strongly nonlinear, although of
course the system is also valid for small amplitude waves. Eddy vis-
cosity m�t is assumed to scale with depth and gravity, and turbulent
stresses use eddy viscosity scaling combined with wavenumber and
depth, and velocity scales.

In the present work we use a Boussinesq–Green–Naghdi rota-
tional water wave system that assumes a polynomial expansion
for the horizontal velocity,

u ¼
XN

n¼0

lbn unðx; y; tÞfnðqÞ; where; q ¼ zþ hðx; yÞ
gðx; y; tÞ þ hðx; yÞ : ð2:2Þ

and N is the approximation order, which must be even. The dimen-
sionless wavenumber, l ¼ k0h0, describes how far the system is
from the shallow water condition. Scaling exponent bn gives the
order of each velocity component, where bn ¼ n when n is even;
bn ¼ nþ 1 when n is odd – this is the typical Boussinesq scaling
for the order of l. The polyonomial basis functions fnðqÞ have the
form fn ¼

Pn
m¼0anmqm, with arbitrary real constants for polynomial

coefficients, anm, and ann – 0. It is assumed without loss of general-
ity that f0 ¼ 1. The sigma-like coordinate q varies between zero at
the bed and one at the free surface. All horizontal velocities compo-
nents u0;u1; . . . ;uN are independent so that higher order velocity
components are not defined by lower order components as in stan-
dard irrotational Boussinesq theories (e.g. Peregrine, 1967). Specifi-
cation of both the order of approximation, OðlNÞ, and the
polynomial coefficients, anm, will define the specific systems once
substituted into the mass and momentum equations. In particular,
different choices of anm will yield different wave properties through
asymptotic rearrangement which is similar to changes in properties
by using different reference velocities in Nwogu (1993). All systems
will converge with an increasing order of approximation, but have
different properties with different choice of basis functions.



Y. Zhang et al. / Ocean Modelling 79 (2014) 43–53 45
The vertical velocity, w, is then uniquely specified from inte-
grating the continuity equation with bottom boundary condition
as

w¼
XN

n¼0

lbn �ðr�unÞðhþgÞgnþ un �rðhþgÞð Þrn�ðun �rhÞfn½ � ð2:3Þ

where gn and rn are integral functions of fn, e.g. gn �
R q

0 fnðq0Þdq0,
with many other functions defined (Appendix B). All integrals have
constant of integration defined such that gnjq¼0 ¼ 0 and thus
gnj

q¼1
0 ¼ gnjq¼1.
To arrive at a final system of equations, the velocity expansions,

and viscous/turbulent stress approximations are inserted into the
mass and momentum equations and terms are kept or discarded
according to the assumed order of approximation, OðlNÞ. This is
identical to the procedure in Zhang et al. (2013), but retaining tur-
bulent stresses, which must be specified through a turbulence
closure.

The vertically integrated mass conservation equation is

@g
@t
þr �

Z g

�h
udz ¼ 0: ð2:4Þ

which, after substitution of specific fn, gives Eqs. (A.1), (A.3) in
Appendix A for Oðl2Þ and Oðl4Þ, respectively.

The momentum equations are then integrated in a weighted
residual sense using the N þ 1 basis functions from the bed to
the free surface:Z g

�h
fm

@u
@t
þ u � ruþw

@u
@z
þrP � l2r � sxx �

@

@z
szx

� �
dz ¼ 0;

m ¼ 0;1; . . . ;N: ð2:5Þ

The nonhydrostatic pressure is found by integrating the dimen-
sionless vertical momentum equation from z to g assuming a zero
gauge pressure at the free surface

PðzÞ ¼ l2
Z g

z

@w
@t

dzþ l2
Z g

z
u � rwdzþ l2

Z g

z
w
@w
@z

dz

� l2
Z g

z
r � szx þ

@

@z
szz

� �
dzþ gðg� zÞ ð2:6Þ

After substitution and integration, these give the coupled
momentum Eqs. (A.2) and (A.4) in Appendix A for Oðl2Þ and
Oðl4Þ, respectively. The systems resemble coupled lower order
Boussinesq equations. Unlike standard Boussinesq expansions,
rotational processes are included and evolve naturally once turbu-
lent stresses sij are specified. This involves determination of the
breaking terms and bottom friction through models for turbulent
viscosity and its evolution, subject to scaling and complexity
limitations.

2.2. Breaking terms and bottom friction

The breaking model developed here aims at a state intermediate
between Boussinesq models with eddy viscosity breaking terms
inserted after the model derivation and calibrated to give reason-
able wave heights in the surf zone (Kennedy et al., 2000a; Lynett
et al., 2002), and more sophisticated computational fluid dynamics
models with complex turbulence closures. The goals of the present
model are to provide accurate wave heights, water levels, and
internal water velocities in the surf zone while retaining a reason-
able computational cost and implementational complexity within
the Boussinesq–Green–Naghdi framework. The system will not
attempt to simulate detailed turbulence properties, or to represent
the bottom boundary layer. The basic framework of the present
model will use eddy viscosity with a k� l turbulence model, with
mixing length l a function of water depth.
Significant simplifications must be imposed to arrive at a trac-
table model:

� Turbulent terms in the pressure Eq. (2.6) are neglected,
� Bottom stresses and wave breaking will be treated as separate

terms, with different evolution equations, and acting on differ-
ent portions of the system,
� Only leading order vertical velocity terms are retained.

This division between breaking and bottom friction has a physical
basis, as bottom stresses are bed-generated and diffuse upwards
while wave breaking arises from surface processes and diffuses
downwards (e.g. Richard and Gavrilyuk, 2012). In the wave roller,
breaking stresses will dwarf the much smaller bottom-generated
shear stresses, while breaking stresses are small outside the roller
where the bottom stresses dominate. The neglect of turbulent
stresses in the pressure equation, while making the system more
tractable, also has a physical basis: turbulent (or any) pressures
generate only normal stresses and thus will not contribute to the
vorticity generation leading to depth-varying currents. Together,
these simplifications will reduce the generality of the system and
mean that details of pressures and turbulent stresses will be more
simplified than reality; however, the single-valued free surface in
this and many other models means that representation of plunging
jets, other free surface complexities such as surface turbulence, and
their effects will always have an upper limit on accuracy in the surf
zone. The additional approximations will allow the ability to model
important aspects of both current-related shear and roller-related
dissipation in the surf zone, which are the two most important
aspects desired.

Because breaking dissipation and bottom stress effects are sep-
arated, they will be modeled with separate eddy viscosities,
mt1ðx; tÞ, and mt2ðx; z; tÞ, respectively. Applying these assumptions
to the eddy viscosity approximation, and assuming that eddy vis-
cosity scaling is OðmtÞ ¼ Oðlh0ðgh0Þ

1=2Þ, the respective turbulent
stress terms become

l2r � sxx ¼ l2r � mt1 ruþ ðruÞT
� �h i

ð2:7Þ

@

@z
sxz ¼

@

@z
mt2 uz þ l2rw
� �� 	

ð2:8Þ

In order to include a specified bottom friction, the bottom
stress-generated term in Eq. (2.5) is integrated by parts,Z g

�h
fm
@sxz

@z
dz ¼

Z g

�h

@

@z
ðfmsxzÞdz�

Z g

�h

@fm

@z
sxzdz

¼ ðfmsxzÞjg�h �
Z g

�h

@fm

@z
mt2ðx; zÞ uz þ l2rw

� �
dz: ð2:9Þ

If there is no air–water shear stress, then sxzðgÞ ¼ 0. For bottom fric-
tional dissipation, some sort of information is required based on
bottom conditions, whether from bed roughness or vegetation type.
These are often placed into a drag framework such as
sxzð�hÞ ¼ Cf ubjubj, where ub is the near-bottom velocity, and Cf is
a bottom friction coefficient normally in the order of 10�3, and
this approach will be adopted. A bottom stress coefficient and
gradient also imply a vertical profile for the eddy viscosity,
mt2ðx; zÞ ¼ ~mt2ðxÞfmðqÞ. Combining eddy viscosity and bottom
friction, the depth-varying eddy viscosity will then be mt2ðx; zÞ ¼
�fmCf ðgþ hÞjubj, where � is a constant applied to control the velocity
difference between surface and bed, and the influence of the bed
velocity (or alternatively mean velocity) on eddy viscosity arises
from scaling considerations. The simplest application will be a
constant vertical profile fmðqÞ ¼ 1 (e.g. Kim and Lynett, 2013),
which will use � � 0:4, but other vertical profiles may also be
employed.
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Using these vertical variations for mt1 and mt2 and performing
integrations over depth, the turbulent stresses retained are then

Z g

�h
fm
@sxz

@z
dz¼�fmjq¼0Cf ubjubj�

Z 1

0
f 0m mt2u;q=ðgþhÞþl2mt2rw
� �

dq

¼�fmjq¼0Cf ubjubj��Cf jubj
XN

n¼0

lbn unwmnmj
1
0

þl2�Cf jubjðgþhÞ rðr�u0ÞðgþhÞemmj10
h

þ r�u0rhþrðu0 �rhÞð Þfmmj10
i

ð2:10Þ

andZ g

�h
l2fmr�sxxdz¼

Z g

�h
l2fmr� mt ruþðruÞT

� �� �
dz

¼l2r� ðgþhÞ
Z 1

0
fmmt1ðruþðruÞT Þdq


 �

�l2ðgþhÞ
Z 1

0
mt1ðrfmÞ � ðruþðruÞTÞdq

�l2fmmt1ðrgÞ � ðruþðruÞTÞjq¼1

�l2fmmt1ðrhÞ � ðruþðruÞTÞjq¼0

¼
XN

n¼0

lbnþ2r� mt1ðgþhÞðrunþðrunÞTÞ/mnj
1
0

h

þmt1ðuT
nrTþðuT

nrTÞT Þ hfmnj10�ðgþhÞemnj10
� �i

�
XN

n¼0

lbnþ2mt1 ðfnmj10rh�enmj10rðgþhÞÞ
h

�ðrunþðrunÞTÞþðEmnj10rh� Jmnj
1
0rðgþhÞÞ

� ðuT
nrT hþðuT

nrT ÞT hÞ=ðgþhÞ�ðJmnj
1
0rh�Kmnj10rðgþhÞÞ

�ðuT
nrT ðgþhÞþðuT

nrTÞT ðgþhÞÞ=ðgþhÞ
i

þ
XN

n¼0

lbnþ2mt1ðfmrqÞj10 � ðrunþðrunÞTÞðgþhÞfnj10
h

þðuT
nrTþðuT

nrTÞT Þðh�ðgþhÞqj10Þf 0nj
1
0

i
ð2:11Þ
2.3. k� l Turbulent-kinetic-energy model for mt1

The final stage of the breaking model is the evolution equation
for eddy viscosity, mt1. This arises directly from representations for
turbulent kinetic energy evolution combined with assumptions
and simplifications relevant to the structure of the Boussinesq–
Green–Naghdi system and eddy viscosity. The k� l model is argu-
ably the simplest incomplete turbulence model, and hence it has a
broad range of applicability with a low computational cost (e.g.
Pope, 2003). Similarly to k� � model, k� l is a favorable numerical
coupling between the flow and turbulence equations with the

term, mt
@<Ui>

@xj
þ @<Uj>

@xi

� �
. This actually allows us to get better velocity

profile under breaking and comparable computational efficiency
compared to most other Boussinesq-type model. The process of
production, transport and dissipation equation for the turbulent
kinetic energy k can be expressed as Pope (2003)

Dk
Dt
� �r � T0 þ P � e: ð2:12Þ

Here, the turbulent energy flux T0 is modeled with a gradient-diffu-
sion hypothesis as

T0 ¼ � mt1

rk
rk: ð2:13Þ

where rk is the turbulent Prandtl number for kinetic energy, and is
generally taken to be 1:0. According the turbulent-viscosity hypoth-
esis introduced by Boussinesq (1877), the production of turbulent
kinetic energy is then

P ¼ mt1½ru � ðruþ ðruÞTÞ þ 2u;z � rwþ 1
l2 u;z � u;z þ 2w2

;z�:

ð2:14Þ

where Oðl2Þ terms are neglected. The turbulent viscosity is defined
by Pope (2003)

mt1 ¼ ck1=2�lm: ð2:15Þ

where �lm is the vertically averaged mixing length, lm. At high
Reynolds number the dissipation rate is modeled as
e ¼ Cek

3=2
=�lm: ð2:16Þ

where Ce ¼ c3 in k� l model. Nezu and Rodi (1986), based on exper-
imental measurements made with stationary currents, concluded
that the length scale tends to zero near the water surface. The
increase of the mixing length and its reduction near the free surface
is given by

lm ¼ jq
ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
ðgþ hÞ ð2:17Þ

�lm ¼
Z 1

0
lmdq ¼ 4=15jðgþ hÞ ð2:18Þ

where j ¼ 0:412 (von Karman constant).
After inserting expressions for T 0; P; � into (2.12) and substi-

tuting mt1 for k, the dimensionless TKE approximation equation
transforms to

Dmt1

Dt
¼ l

mt1rk
r � ðm2

t1rmt1Þ þ l c2�l2
m

2mt1
P � 1

l
c2

2�l2
m

m2
t1 ð2:19Þ

A value of c ¼ 0:55 yields the correct behavior for shear flow in k� l
models, and this is used here. As assumed above, kinematic viscos-
ity is depth-uniform. Integrating (2.19) from bottom to the surface
then gives

@mt1

@t
þrmt1 �

XN

n¼0

ungnj
1
0 �

l
mt1rk

r � ðm2
t1rmt1Þ � l c2�l2

m

2mt1

Z 1

0
Pdq

þ 1
l

c2

2�l2
m

m2
t1 ¼ 0: ð2:20Þ

where
Z 1

0
Pdq¼mt1

XN

n¼0

XN

m¼0

lbmþbn rum � ðrunþðrunÞTÞ/mnj
1
0

h(

þrum � ðunþðunÞTÞðrhfmn�ðgþhÞemnÞj10
� �

þumðrhfmn�ðgþhÞemnÞj10 � ðrunþðrunÞTÞ

þ
Z 1

0
umrfm � ðunrfnþðunrfnÞTÞdq

�
�
XN

n¼0

lbn 2un � ½rðr�u0Þrnj10

þ r�u0rhþrðu0 �rhÞð Þ=ðgþhÞfnj10�þ
XN

n¼0

XN

m¼0

lbmþbn�2um

�un=ðgþhÞ2Emnj10þ2 ðrðr�u0ÞðgþhÞÞ2=3 r�u0rhð
�

þrðu0 �rhÞÞ2þ2rðr�u0ÞðgþhÞ r�u0rhþrðu0 �rhÞð ÞÞg:
ð2:21Þ

This one equation model for the evolution of eddy viscosity is used
to find depth-averaged values to use in the velocity calculations for
the Boussinesq–Green–Naghdi rotational wave model.

3. Moving shoreline

For computations of wave runup, a moving shoreline method is
developed here. Benque et al. (1982) proposed a way to treat the



0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

z(
m

)
x(m)

abcdef g

wavemaker

Fig. 1. Experimental setup for regular wave breaking test. Gauges (a–g) are at still water depths [0.169, 0.156, 0.142, 0.128, 0.113, 0.096, 0.079] m, respectively.
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moving boundary by assuming a thin water layer over the dry land
region so that all grids in the computational domain are always
wet so that there is no need to update the wet computational
boundary during the computation. The method we are using is
similar but a bit different in the governing equations for the ‘‘thin
layer’’. Like most moving shoreline methods, a threshold, d, to
determine the dividing point between wet and dry area needs to
be set. If the total water depth hþ g > d, the model Eqs. (2.4)
and (2.5) will be applied; otherwise, a new set of equations will
be adopted as following,

g ¼ �hþ d; ð3:1Þ
@u
@t
¼ xð0� uÞ: ð3:2Þ

These equations set a thin layer over the ‘‘dry area’’ (hþ g <¼ d)
allowing the water to propagate up to the shoreline but preventing
the thin layer water to flow back down by setting a damping coef-
ficient x for the horizontal velocity, where x ¼ Cðx� xðdÞÞ. So
unlike Benque’s method, we do need to update the threshold posi-
tion the at each computing time step and the total mass is better
conserved.

4. Numerical verification

Here we present three numerical tests to validate the perfor-
mance of the breaking model, all for one horizontal dimension.
15 20 25 30
−0.1

0
0.1
0.2

η(
m

)

h=0.169 m

15 20 25 30
−0.1

0
0.1
0.2

η(
m

)

h=0.142 m

15 20 25 30
−0.1

0
0.1
0.2

time(s)

η(
m

)

h=.096 m

Fig. 2. Surface elevation decay for Plunging Breaking. ( ) Oðl
The first test examines regular wave breaking on plane slopes as
reported by Ting and Kirby (1995, 1996) for plunging and spilling
cases, and compares both surface elevations and interior fluid
velocities. The second test compares computed and measured
irregular wave evolution over the conditions of Mase and Kirby
(1992). The final test examines solitary wave runup on a beach
(Synolakis, 1987).

All numerical tests used a weakly nonlinear Oðl4Þ Boussinesq–
Green–Naghdi rotational system (Zhang et al., 2013) with second
order spatial central differencing scheme and fourth order
Runge–Kutta time differencing. For all quantities in the Ting and
Kirby experiments, results were also computed using a fully
nonlinear Oðl2Þ system to compare with the Oðl4Þ data. A spatial
resolution of x = 0.025 m and t = 0.02 s was used for all tests shown
here.
4.1. Wave breaking

Fig. 1 shows the experimental setup where regular waves were
generated in a water depth of 0.4 m using second order generation
(Zhang et al., 2014a) and propagated to the 1:35 sloping beach.
Two cases were studied.

1. Spilling breaker, H = 12.5 cm; T = 2 s, kh ¼ 0:680,
2. Plunging breaker, H = 12.8 cm; T = 5 s, kh ¼ 0:257.
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The wave height-depth ratio in the constant-depth region was
large (H=h > 0:3) and the breaking was intense. Fig. 2 shows
measured and computed time series of surface elevation at differ-
ent depths for the plunging breaker case, with good agreement
seen.

Figs. 3 and 4 show numerical and measured results for wave
height and setup from outside the breaking region through to the
shoreline, with good agreement for both quantities. Wave heights
increased slowly before breaking and then rapidly decayed
through the surf zone. Setup increased strongly after breaking as
expected, with good agreement between computed and measured
values. For both the spilling and plunging breakers, the present
system does not model the very sharp decrease in wave height at
initial breaking, and shows a more gradual decline. This is likely
because of the time needed to build up turbulent kinetic energy
using the present breaking model, which acts on velocity gradients
and does not model the initial overturning. However, overall agree-
ment is good and is comparable to other systems (Tissier et al.,
2012). In somewhat of a surprise, wave heights and setups are
almost identical for Oðl2Þ and Oðl4Þ systems. This suggests
that the breaking model dominates evolution in the surf zone,
and the specific equations used are of much less importance,
at least for the cases considered. Because both test cases have
relatively small wavenumbers even in the initial depth
(kh ¼ 0:680; kh ¼ 0:257), both Oðl2Þ and Oðl4Þ systems should
have similar properties for these cases, at least to second order
(Zhang et al., 2013). Thus it seems that Oðl4Þ systems may not
always provide much of an improvement in the computation of
surface elevations in the surf zone. However, as will be seen very
soon, interior velocities and undertow benefit significantly from
the increase from Oðl2Þ to Oðl4Þ systems.

One of the major benefits of Boussinesq–Green–Naghdi systems
is the removal of the irrotationality assumption - thus we expect to
simulate well the interior water velocities well under breaking.
Here we choose two numerical results for orbital velocities:
time-varying velocities at different levels, and time-averaged
undertow. Fig. 5 compares the time series of horizontal velocity
to the data reported by Ting and Kirby (1994) for the plunging case.
The location was at water depth h ¼ 0:079 m where the breaking
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Table 1
Dimensionless, depth-averaged, root-mean-square error in undertow profiles

ðuln �uÞ2

gh

� �1=2

for plunging breaker using Oðl2Þ and Oðl4Þ systems.

System Still Water Depth

0.169 m 0.156 m 0.142 m 0.128 m 0.113 m 0.096 m 0.079 m

Oðl2Þ 0.0172 0.0157 0.0152 0.0279 0.0213 0.0289 0.0294

Oðl4Þ 0.0093 0.0104 0.0133 0.0153 0.0167 0.0130 0.0123

Y. Zhang et al. / Ocean Modelling 79 (2014) 43–53 49
was very strong. Four measurement points were vertically distrib-
uted and numerical results were compared to measured values.
The magnitude of horizontal velocity decreased with increasing
submergence, as expected and showed a sharp increase on the
wave front and more gentle decrease on the back side. Higher
Oðl4Þ results showed good agreement with measured values at
all depths for both magnitude and phase. Small differences were
noticeable near the times of maximum velocity, where details of
the plunging jet would likely have been important and are not
modeled in the present system. In contrast, the Oðl2Þ system
tended to overpredict velocities at both the crest and trough
although overall agreement was still reasonable. A likely reason
for this is that the quadratic velocity profile was unable to resolve
the complexity of velocities in the breaking region.

Fig. 6 shows the variation of time-averaged horizontal velocity
(undertow) with depth at all measurement locations for the plung-
ing breaker. Negative undertow velocities near the bottom
region can be seen for both sites while the mean surface velocity
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Fig. 7. Time-varying turbulent kinetic energy for plunging breaker at different points
computed; (–) measured.
is positive. The Oðl4Þ system shows reasonable agreement,
demonstrating that surf zone undertow can be modeled with this
relatively simple breaking model, and giving good confidence mov-
ing forward for more complex three dimensional topographies.
However, there are some differences for near-bed velocities in dee-
per depths, where a small secondary recurvature is observed in
computations, but not in the data. This is likely a function of the
q4 vertical variation in velocity profiles, which is less complex than
shown by the actual data. When decreasing order of approximation
to Oðl2Þ, agreement with data declines. Again, this is likely a func-
tion of the limited z2 velocity profile for the Oðl2Þ model. Table 1
shows depth-averaged, dimensionless undertow error for both
the Oðl2Þ and Oðl4Þ systems, demonstrating the significant
increase in accuracy for the higher order system. When combined
with the surface elevation and orbital velocity results, it appears
that a higher order model will provide significant improvements
to interior velocities, but is not as important in improving surface
elevation results in the surf zone.
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Because the breaking system developed and implemented
here provides direct estimates of the turbulent kinetic energy,
k, it becomes possible to compare with experimental values at
different points in the water column as shown in Fig. 7. These
results show predictions that match well the general behavior
of the experimental data, with both Oðl2Þ and Oðl4Þ systems giv-
ing similar results. However, there appear non-negligible over-
predictions of k at the times of maximum breaking, and overall
agreement is not as good as with surface elevations or interior
velocities. This increased error is to be expected to some degree,
since higher order quantities like turbulent kinetic energy and
shear stress are more difficult to model than interior velocities
or surface elevations (Pope, 2003). Given the relatively simple
mixing length model implemented here, agreement seems
15 20
−0.04
−0.02

0
0.02
0.04

η(
m

)

h

15 20
−0.04
−0.02

0
0.02
0.04

η(
m

)

h

15 20
−0.04
−0.02

0
0.02
0.04

η(
m

)

h=

15 20
−0.04
−0.02

0
0.02
0.04

η(
m

)

h=

15 20
−0.04
−0.02

0
0.02
0.04

η(
m

)

h=

15 20
−0.04
−0.02

0
0.02
0.04

ti

η(
m

)

h=

Fig. 9. Time series of surface elevation at different
reasonable but it remains likely that a more complete turbulence
model would be able to provide non-negligible improvements in
higher order turbulent quantities. (See Fig. 7)

4.2. Irregular wave breaking

For a test of irregular waves the experiments of Mase and Kirby
(1992) were modeled. The irregular waves were generated in
47 cm-depth water transitioning to a 1:20 planar slope to the
shoreline as described in Fig. 8. Fig. 9 shows a truncated time series
of computed and measured surface elevations at 6 gauges. The
computed result almost overtops the data for the 5 deepest gauges.
However, as waves propagate near the shore, the computed
elevation goes off a bit but the agreement is still good, and
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Fig. 10 shows a good match for wave setup and wave height. Other
statistical parameters can tell how well the model performs non-
linearly. Wave asymmetry is a measure of left–right differences
in a wave. Skewness is a measure of crest-trough shape. They are
both computed from time series of surface elevation at chosen
locations (Kennedy et al., 2000a). The computed results are com-
pared with the data in Fig. 11. The trend is caught well from mod-
erate depth through breaking to the shore. The wave becomes
more asymmetric as propagating to the shore. The skewness
increases as the wave shoals and breaks, and then decreases near
the shoreline.
4.3. Solitary wave runup

As a check of the moving boundary algorithm, a runup test for a
breaking solitary wave was simulated for a beach slope of 1=19:85.
The computed water surface runup for an initial solitary wave with
wave height to still water depth ratio of H=h ¼ 0:3 was compared
to the experimental data by Synolakis (1987). Fig. 12 shows the
water surface compared to the data during shoaling, breaking,
runup and rundown. Panels 1, 2 and 3 show the wave becoming
asymmetric followed by breaking in the surf zone. Panel 4
(t ¼ 25) shows the breaking wave run up onto the beach and
reaching near the highest point in Panel 5 (t ¼ 45), while Panel 6
(t ¼ 50) shows the rundown. Numerical results show good agree-
ment with the data, providing a verification of the overall system
for breaking and runup.
5. Discussion and conclusions

This paper is an extension and partial verification of the Bous-
sinesq–Green–Naghdi rotational water wave model (Zhang et al.,
2013). Due to the removal of the irrotationality assumption and
the use of standard turbulence models, fewer ad hoc breaking
assumptions have been made than many other eddy viscosity
Boussinesq-type breaking models. Bottom friction and even sur-
face wind shear stress can be added into the model by applying
the boundary conditions when integrating the vertical force term
in the momentum equation. Using simplifications to the well-
known k� l turbulence model, surf zone breaking phenomena
such as wave height decay, setup, undertow velocities, and wave
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runup are shown to be modeled well. One area of significant pro-
gress compared to some other Boussinesq surf zone models is
the good agreement with the undertow velocity data which further
validates the rotational feature of our model.

Both Oðl2Þ and Oðl4Þ systems were tested against each other
and against experimental data. Results showed that the lower
order systems performed very similarly to the higher order sys-
tems in computing wave heights and mean setup. In contrast,
the more complex velocity profile found in the Oðl4Þ system
allowed for a significantly improved representation of both time-
varying and time-averaged interior velocities. However there is
still room for improvement. The mixing length profile used for
breaking is highly approximate and might not represent the actual
mixing length with high accuracy. This affects many quantities
including the turbulent kinetic energy, k, which was not predicted
as well as either surface elevations or interior velocities. A more
complete turbulence model may be warranted for the future. The
single-value surface assumption will additionally impose an upper
limit on surf zone accuracy. However, the systems describe the
overall breaking water surface, wave shape, rotational orbital
velocities, and moving shoreline for wave runup reasonably well.

Although the tests herein provided a glimpse of the improved
rotational capabilities of the model, further verification for two
horizontal dimensions is necessary. This work is ongoing and will
examine performance for breaking-driven flows where the lack
of any irrotationality condition is expected to be important in mod-
eling the interior velocities, and applications to geophysical and
engineering problems.
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Appendix A. Expressions for depth- integrated Oðl2Þ; Oðl4Þ
systems

The vertically integrated mass conservation equation is, to
Oðl2Þ

@g
@t
þr �

Z g

�h
udz ¼ g;t þr �

X2

n¼1

lbn unðgþ hÞgnjq¼1

 !
¼ 0: ðA:1Þ

where gn is defined in Appendix B.
Weighted momentum equation keeping all terms to Oðl2Þ are

u0;tðgþ hÞgmjq¼1 þ u0 � ru0ðgþ hÞgmjq¼1 þ grgðgþ hÞgmjq¼1

þ l2
X2

n¼1

un;tðgþ hÞ/mn � ung;temn

� �
jq¼1 � l2



1
2
rðr � u0;tÞðgþ hÞ3

	 ðgm � mmÞ þ ðr � u0;tÞðgþ hÞ2rðgþ hÞgm þrðu0;t � rhÞðgþ hÞ2

	 ðgm � SmÞ þ u0;t � rhrgðgþ hÞgm � ðr � u0;tÞðgþ hÞ2rhSm�jq¼1

þ l2
X2

n¼1

ðun � ru0 þ u0 � runÞðgþ hÞ/mn � unr � ðu0ðgþ hÞÞemn½ �jq¼1

þ l2ðgþ hÞ2½ðr � u0Þ2 � u0 � rðr � u0Þ�ðrggm þrhðgm � SmÞÞjq¼1

þ l2

2
ðgþ hÞ3r½ðr � u0Þ2 � u0 � rðr � u0Þ

�
ðgm � mmÞjq¼1 � l2ðgþ hÞ

	rgu0 � rðu0 � rhÞgmjq¼1 � l2ðgþ hÞ2rðu0 � rðu0 � rhÞÞðgm � SmÞjq¼1

�
Z g

�h
fm
@sxz

@z
dz�

Z g

�h
l2fmr � sxxdz ¼ 0; m ¼ 0;1;2: ðA:2Þ

The vertically integrated mass conservation equation is, to Oðl4Þ
@g
@t
þr �

Z g

�h
udz ¼ g;t þr �

X4

n¼1

lbn unðgþ hÞgnjq¼1

 !
¼ 0: ðA:3Þ

The integrated conservation of momentum equations for Oðl4Þ level
are

u0;tðgþ hÞ þ u0 � ru0ðgþ hÞ þ grgðgþ hÞð Þgmjq¼1 þ l2 . . .ð Þ

þ
XN

n¼3

lbn hun;t/mnjq¼1 �
XN�2

n¼1

lbn ½hrðh2r � un;tÞðGnjq¼1gmjq¼1

�Cmnjq¼1Þ � h2r � un;trhðcmnjq¼1 � hmnjq¼1Þ þ hrðhðun;t � rhÞÞ
	 ððgn � RnÞjq¼1gmjq¼1 � cmnjq¼1 þHmnjq¼1Þ þ hðun;t � rhÞrh

	 ðqmnjq¼1 � Fmnjq¼1 � /mnjq¼1 þWmnjq¼1Þ� �
Z g

�h
fm
@sxz

@z
dz

�
Z g

�h
l2fmr � sxxdz ¼ 0; m ¼ 0;1;2;3;4: ðA:4Þ

For both Oðl2Þ and Oðl4Þ systems, depth-integrated stress terms are
given by (2.10) and (2.11).

Appendix B. Integral functions

All indefinite integrals will be assumed to have integration con-
stants defined to give values of 0 at q ¼ 0. Thus, for example,
gnj

q¼1
0 ¼ gnjq¼1.

gn¼
R

fndq rn¼
R

f 0nqdq Gn¼
R

gndq wmnm¼
R

f 0mf 0nfmdq

Rn¼
R

rndq /mn¼
R

fmfndq cmn¼
R

fmgndq fmn¼
R

fmf 0ndq

qmn¼
R

fmrndq Cmn¼
R

fmGndq Hmn¼
R

fmRndq Emn¼
R

f 0mf 0ndq

hmn¼
R

fmgnqdq mm¼
R

q2fmdq Sm¼
R

qfmdq Kmn¼
R

f 0mf 0nq2dq

emn¼
R

fmf 0nqdq Wmn¼
R

fmfnqdq Fmn¼
R

fmrnqdq Jmn¼
R

f 0mf 0nqdq
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