
Troubleshooting Thousands of Jobs on Production Grids
Using Data Mining Techniques

David A. Cieslak, Nitesh V. Chawla, and Douglas L. Thain
Department of Computer Science and Engineering, University of Notre Dame

Abstract

Large scale production computing grids introduce new
challenges in debugging and troubleshooting. A user that
submits a workload consisting of tens of thousands of jobs
to a grid of thousands of processors has a good chance of
receiving thousands of error messages as a result. How can
one begin to reason about such problems? We propose that
data mining techniques can be employed to classify fail-
ures according to the properties of the jobs and machines
involved. We demonstrate the success of this technique
through several case studies on real workloads consisting
of tens of thousands of jobs. We apply the same techniques
to a year’s worth of data on a 3000 CPU production grid
and use it to gain a high level understanding of the system
behavior.

1 Introduction

Large scale production computing grids introduce new
challenges in debugging and troubleshooting. Consider the
user that submits ten thousands jobs to a computational grid,
only to discover that half of them have failed. The failures
might be due to a bug in the program on certain inputs, an
incompatibility with certain operating systems, a lack of re-
sources to run the job, or just bad luck in the form of a
widespread power failure. How can a user or administrator
of a large computing system diagnose such problems? It
does no good to examine one or even a handful of jobs in
detail, because they may not represent the most common or
the most significant failure mode.

We propose that data mining techniques can be applied
to attack this problem. Computing grids of various kinds
already publish a large amount of structured information
about resources, users, and jobs. Given access to this data,
classification techniques can be used to infer what proper-
ties of machines, jobs, and the execution environment are
correlated with success or failure. For example, it should be
possible for the user with 10,000 jobs to quickly discover
that 90 percent of all failures occurred on Linux machines
running kernel version 2.6.2 with less than 1 GB of RAM,

and the remainder were randomly distributed.
Of course, this kind of analysis does not immediately

diagnose the root cause of the problem, but it would be a
significant help in allowing the user to focus their attention
on the situation or resource of greatest interest. In this case,
the information would allow the user to quickly identify the
correct environment in which to debug their program in de-
tail. Or, the user might simply direct the grid computing
system to avoid machines matching those properties.

In a previous short paper [4], we introduced the con-
cept of troubleshooting large production runs using data
mining techniques. We demonstrated the feasibility of this
approach by executing large synthetic workloads with in-
duced failure conditions dependent upon the properties of
execution machines. Our techniques were able to infer the
properties of machines correlated with failures, which were
closely related to the root cause.

In this paper, we apply our techniques to real workloads
in which trouble is suspected, but the root causes are un-
known and not easily diagnosed by the user. We consider
a number of workloads of tens of thousands of jobs each
submitted to a 500-CPU system at the University of Notre
Dame, showing examples of problems diagnosed by exam-
ining machine properties, job properties, and the relation-
ship between the two. We then apply these techniques to
data collected over the course of a year on 300,000 jobs
running on over 3000 machines on a large campus grid at
the University of Wisconsin. Throughout, we discuss the
strengths and limitations of this approach.

2 Troubleshooting Technique

We have implemented a prototype troubleshooting tool
that diagnoses workloads submitted to Condor [26] based
grids. Figure 1 gives an example of the input data to our
troubleshooting tool. Every job submitted to Condor is rep-
resented by a ClassAd [22] that lists the critical job proper-
ties such as the owner, executable, and constraints upon ma-
chines where it is willing to run. When the job is complete,
the exit code, resource consumption, and other statistics are
added to the ClassAd. Every machine participating in Con-

1

Job ClassAd
JobId = 29269

Owner = ”dthain”
VirtOrg = ”NWICG”

Cmd = ”mysim.exe”
Args = ”-f -s 5”

ImageSize = 82400
ExitCode = 1

ExitBySignal = FALSE
Requirements = (Arch==”LINUX”)

Rank = (MachineGroup==”elements”)
Machine ClassAd

Name = ”aluminum.nd.edu”
OpSys = ”LINUX”

Arch = ”INTEL”
IpAddr = ”111.222.333.444”

TotalDisk = 3225112
TotalMemory = 1010

Mips = 3020
LoadAvg = 1.5

KeyboardIdle = 272
MachineGroup = ”elements”

Rank = (UserGroup==”physics”)
Start = (KeyboardIdle>300)

User Log

(29269) 05/02 09:35:53 Submitted 111.222.333.444
(29269) 05/02 09:44:13 Executing 111.222.333.555
(29269) 05/03 17:57:53 Evicted.
(29269) 05/03 17:59:01 Executing 111.222.333.666
(29269) 05/04 04:35:02 Exited normally, status 0

Figure 1. Sample Data for Troubleshooting

dor is also represented by a ClassAd that lists the available
physical resources, the logical configuration of the machine,
and constraints upon jobs that it is willing to accept. The
ClassAd language is schema-free, so the precise set of at-
tributes advertised by jobs and machines varies from instal-
lation to installation, depending on what policies the local
administrator constructs. However, within one Condor in-
stallation, there is a high degree of schema consistency.

A user log file gives the sequence of events in the life-
time of a workload. The log file states when each job is
submitted, when and where it begins executing, and when it
completes. It also records the following undesirable events
that are of great interest for troubleshooting. When a job
completes, it indicates whether it exited normally (i.e. com-
pleted main) with an integer exit code, or abnormally (i.e.
crashed) with a given signal number. A job can be evicted
from a machine based on local policy, typically a preemp-
tion in order to serve a higher priority user. A job can
suffer an exception which indicates a machine crash, a net-
work failure, or a shortage of system resources. A job can
be aborted by the user if it is no longer needed. In this
work, we define failure as any non-zero completion, abnor-
mal completion, eviction, or exception.

Between these three data sources, we can observe what
jobs succeed, which fail and what the properties of the jobs

S: 90
F: 0

S: 120
F: 5

S: 1000
F: 10

S: 0
F: 250

Arch

AMD64INTEL

TotalDisk

>1GB<1GB

OpSys

LINUXWINNT

Figure 2. Sample Decision Tree

and machines involved are. Conveniently, each of these data
sources is available to end users without any administrative
assistance or configuration, so this technique can be very
widely applied. Users may perform diagnosis on workloads
that are incomplete. Both the job and machine data are col-
lected at the time tool is run; this imposes some limitations
we discuss below.

A challenge in this domain is that the failure and suc-
cesses are not constant — that is, the typical production
grid observes a varying degree of failures and successes
over time, which is largely driven by the addition/deletion
of users and applications. This also imposes the issue of
high class imbalance in the data [2]. An analysis of the
workloads in the subsequent sections shows that the fail-
ures and success are varying over time significantly. Thus,
the primary challenges are to be able to counter the issues of
class imbalance, non-stationary data distribution, and model
interpretability.

Standard decision tree algorithms can be very sensitive
to imbalance in class distributions [9], thus limiting their
use in our work. To that end, we implemented a decision
tree algorithm that utilizes the Hellinger distance as the ob-
jective function [5]. Hellinger distance is invariant to the
class skew; therefore, it is ideal for problems in which the
class ratios are unknown and potentially dynamic. This
algorithm is highly effective under class imbalance, trains
quickly compared to other imbalance solutions such as sam-
pling, and generates readable model.

Our prototype tool accepts the three data sources as in-
put, and then constructs a decision tree for both job and
machine properties, the Hellinger Distance Decision Tree
(HDDT) [5] algorithm. A sample tree is shown in Figure 2
The leaves of the tree represent disjoint subsets of jobs, a
certain number succeeding (S) and a certain number fail-
ing (F). The internal nodes of the tree represent job or ma-
chine properties, and the edges indicate constraints upon the
values of those properties. For example, the rightmost leaf
indicates the category of jobs that ran on machines where
OpSys=="LINUX" and Arch=="AMD64". 250 jobs in
that category failed, and none succeeded.

Static Properties
(most relevant to success/failure)

OpSys = ”LINUX”
Arch = ”INTEL”

Subnet = ”111.222.333”
TotalDisk = 3225112

TotalMemory = 1010
KFlops = 842536

Mips = 3020
JavaVersion = ”1.6.0 05”

CondorVersion = ”7.0.2”
KernelVersion = ”2.6.18-53.1.13.el5”

Dynamic Properties
(only add noise to the result)
LoadAvg = 1.5

CurrentTime = 1206568628
KeyboardIdle = 272

Disk = 3225112
Memory = 1010

VirtualMemory = 2053
Artificial Labels

(can hide root causes)
Name = ”aluminum.nd.edu”

IpAddr = ”111.222.333.444”
MachineGroup = ”elements”

IsDedicated = FALSE
IsComputeCluster = TRUE

ForDan = FALSE

Figure 3. Categories of Machine Labels

A decision tree from a real workload is much larger, and
may have hundreds of leaves. Such a data structure can be
difficult for even the expert to parse. To accommodate the
non-expert user, our tool simply emits the three most signif-
icant nodes of the decision tree as ClassAd expressions. In
our experience so far, we have found this to be effective.

In our initial attempts at applying this technique, the cre-
ated decision tree were enormous, very difficult to read, and
contained a number of splits on what appeared to be irrele-
vant data. The problem arose becuase we collected machine
data by querying Condor after the workload completed, in
some cases weeks or months later. Figure 3 gives examples
of the kinds of data present in the machine ClassAds. Static
properties are labels created by Condor itself according to
the fixed local hardware or operating system, which is not
likely to change over the course of weeks or months. Dy-
namic properties are observations of constantly changing
values, such as load average or available memory. Artificial
labels are properties assigned by administrators in order to
simplify policy enforcement or reporting.

In general, it is necessary to remove known dynamic la-
bels from the algorithm, because they only add noise to the
output. As we will show below, it is meaningful to classify
both static and artificial labels, but each produces a differ-
ent character of results. Our prototype tool allows for both
forms of analysis.

3 Single User Workloads

How do we evaluate the quality of a troubleshooting
technique? Quantitative performance evaluation does not
apply: the techniques presented here run in seconds on
workloads of tens of thousands of jobs, and in minutes on
the whole-grid data presented later. We may judge a tech-
nique to be useful if it correctly diagnoses a problem that is
known but not understood, or reveals a problem that was en-
tirely unknown. Of course, no single troubleshooting tech-
nique is universally applicable. So, to evaluate this tech-
nique, we present several case studies of diagnosing real
workloads, and use the opportunity to understand the limits
of the technique.

We begin by considering single-user workloads executed
on our local campus grid of 500 CPUs at the University
of Notre Dame. This grid is highly heterogeneous, con-
sisting of multiple dedicated research clusters and cycle-
scavenged desktop and classroom machines. Machine per-
formance and capacity varies widely: CPUs range from
500-6000 MIPS, disks range from 400MB to 500GB, and
RAM ranges from 243MB to 6GB. In such an environment,
diagnosis of incompatibilities is critical.

Our first case study is set of 60,000 jobs that perform a
biometric image processing workload. The jobs are gen-
erated by a high level abstraction designed for non expert
users. The abstraction divides a very large problem into
a small number of very similar jobs, so any problems are
likely to be due to variations in available machines.

The user in question presented with the complaint that
the workload had a long tail. A number of jobs at the end
of the workload took far too long to complete, having been
evicted many times from multiple machines.

Figure 4 shows the output of the troubleshooting tool.
When run on artifical labels, it produced a decision
tree too large to present in full here. However, the
most significant rule immediately pinpointed the prob-
lem: these jobs were always evicted from machines where
MachineGroup=="ccl", a label indicating a cluster of
seven homogeneous machines.

The results on static labels give a better sense of the root
cause. These machines are distinguished from others in the
pool by three properties: TotalDisk <= 125GB and
JavaMFlops <= 3.1 and TotalVirtualMemory
<= 1GB. Based on our knowledge of the workload and
machines, we know that the disk space is sufficient and the
Java performance is irrelevant. However, the total virtual
memory seems unusually low: most machines are config-
ured with at least several GB of virtual memory. We hy-
pothesized that the job was crashing due to exhausting vir-
tual memory, and confirmed this by manual testing. The
cluster was misconfigured when it was installed, but no-one
noticed until these particular jobs ran.

Feature mapping Tree properties Most Significant Rule Machines Indicated
height: 13 (MachineGroup == ccl) → ccl00 – ccl07

Artificial Labels nodes: 301 (completed:0 evicted:305)
leaves 166
height: 19 (TotalDisk ≤ 125982176) && ccl00 – ccl07

Static Labels nodes: 301 (JavaMFlops ≤ 3.152064) && cclbuild00 – 03
leaves 153 (TotalVirtualMemory ≤ 1043856)

→ (completed:0 evicted:305)

Figure 4. Decision Tree Results on a Biometric Workload

Feature mapping Tree properties Most Significant Rule Administrator Conclusion
height: 10 (TotalDisk ≤ 36669824) && The code generated very

Machine Labels nodes: 34 (TotalVirtualMemory ≤ 4192800) → large output files, exceeding the
leaves: 18 (completed: 8 ShadowException: 737) OS imposed 2GB limit.
height: 2 Setting Parameter1 to 4 makes

Job Labels nodes: 34 (Parameter1 = 4) → linear separation for SVM
leaves: 31 (completed: 0 ShadowException: 393) training intractible.

Figure 5. Decision Tree Results on a Data Mining Workload

What may we observe from this exercise? First, the artif-
ical labels allowed for a compact, correct statement, but did
not suggest the root cause of the problem. The static labels
are more suggestive, less compact, and require the reader to
apply some domain knowledge to get to the root cause. But,
both forms create true statements that can be acted upon. In
both cases, the expression emitted by the troubleshooter can
be placed into the user’s submission file verbatim in order
to avoid machines with those properties, without even both-
ering to understand the root cause. In the case of the static
properties, the requirement even matches several additional
machines on which the job is likely to crash, but simply did
not happen to appear in the original workload.

Not all failures can be blamed on properties of machines.
In many cases, a particular job may have some property that
prevents it from executing successfully on any machine.
Can this technique diagnose problems with jobs?

Another user ran a workload of several hundred jobs,
performing a study of various data mining techniques on
several datasets. Much like the previous example, a large
portion of the workload finished quickly, but a few strag-
glers remained. This problem was debugged in two stages.

Figure 5 shows the output of the debugging tool. Ini-
tial analysis on the machine properties was not fruitful.
The most significant branch indicated TotalDisk and
TotalVirtualMemory below critical values as associ-
ated with failure. Although that analysis was true, a lack of
resources was not the root cause as it was above.

Analysis on job properties was much more fruitful. For-
tunately, this user made a habit of putting logical informa-
tion about the job into the ClassAd for bookkeeping pur-
poses. First, our tool indicated that all the failures were oc-
curing to jobs using the dataset oil. A manual test of jobs
on this dataset revealed that, because of the large dataset
size, the algorithm was producing an output debug stream

that exceeded 2GB, the maximum file size for processes us-
ing the 32-bit interface. The user disabled the debug output
and re-ran the workload.

This improved the workload significantly, but still strag-
glers remained. Again, the tool was applied, and this time
the result was much clearer. Jobs on multiple datasets with
Parameter1 == 4 were always evicted and never com-
pleted. In this particular case,Parameter1 controlled the
complexity of the algorithm; setting it to 4 yielded a run-
time so high that it could not complete within the 8-12 hour
window typically available on cycle scavenging machines.
By redirecting the jobs to dedicated machines, they eventu-
ally completed.

This exercise offers the following lessons. First, that
troubleshooting via data mining is not a silver bullet. In
the case of the 2GB file problem, the association with the
oil dataset narrowed the search space for the problem,
but did not point directly to the root cause. Second, man-
ual annotation of the job properties can be of significant
value. By placing runtime parameters directly into the Clas-
sAd (instead of just in the Arguments property), the trou-
bleshooter was able to isolate the properties associated with
failure.

4 Multi User Workloads

So far, we have examined several examples of debugging
via data mining. In each case, a user with a large coherent
workload suspects a problem, and explicitly invokes the de-
bugging tool to investigate. Can we also use the same tech-
niques to study a large production computing system with
many different users over a long period of time?

To answer this question, we applied the same tech-
niques to data collected from a large production grid of the
course of one year. The Grid Lab of Wisconsin (GLOW)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
s

B
us

y

Q
ue

ue
 L

en
gt

h

CPUs Busy - Daily Average
Queue Length - Daily Max

Figure 6. Timeline of CPU Utilization in the GLOW

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jobs Submitted 14382 18469 8719 7872 1529 9234 68236 78474 25528 15595 12828 36372
Jobs Complete 13980 14873 8693 7679 1527 8230 28404 19937 23314 16127 11869 35420

Jobs Failed 365 1736 23 277 0 1 34325 56707 774 161 51 286
Jobs Rolled Back 13671 5530 8196 2366 821 1822 16827 83729 65634 88914 104606 170560

Jobs Aborted 37 1367 382 35 0 8 5050 1120 2768 79 202 523
Goodput (CPU-days) 5268 3329 4139 2196 36 3575 14391 8034 8523 5034 8617 6374

Badput (CPU-days) 523 1993 732 207 5 152 2557 2251 1524 1288 1061 3724

Figure 7. Number of Events per Month in GLOW

Virt Org Submitted Completed Failed Aborted Exception Evicted
cmsprod 122422 102623 16126 5698 14043 105786
cdf 119185 64203 56635 902 13992 338252
samgrid 34132 17878 11449 4848 4808 11563
nanohub 2012 1225 770 23 1596 5889
engage 1998 1563 392 52 953 7976
uscms01 1672 893 734 48 12 2962
mis 252 210 50 0 0 524

Figure 8. Number of Events per Virtual Organization in GLOW

is a campus-scale grid of about four thousand machines.
The grid is physically partitioned across multiple campus
departments, each running Condor, all ”flocked” together
for mutual load sharing. GLOW is also accessible from
the Open Science Grid via a Globus GRAM [6] interface,
which can submit jobs to any of the Condor pools in GLOW.
A remote user would typically use an agent such as Condor-
G [11] to manage job submissions into GLOW.

GLOW is already instrumented as follows. Each indi-
vidual job that arrives via the Globus GRAM interface is
submitted to Condor. Each job produces a user log file that
records the events in the lifetime of the job. Upon com-
pletion of the job, GLOW automatically archives the user
log file and the final ClassAd of the job. In this section,
we present results from all the data recorded archived 2007.
Note that this data includes information about all jobs sub-
mitted to GLOW from the Open Science Grid, but it does
not include jobs submitted from submitters inside GLOW
itself. In addition, the machine properties were not recorded
at the time of execution, so we made a single observation of
machine data in April 2008.

This data is different from ordinary Condor pools in two
respects. First, the ”users” of the system are not recorded
as individuals, but as the virtual organization the user be-
longs to. Second, the machines in the system had about
thirty additional artifical labels added in order to enforce
local policy.

Figure 6 gives an overview of the load placed on this sys-
tem over time. The filled boxes indicate the average daily
CPU consumption of grid jobs. The dark line indicates the
maximum queue length on each day. (Again, the actual
utilization of the resources was higher; our data only re-
flects load placed on the system by remote users.) It can be
seen that both load and utilization are highly bursty. Small
workloads of hundreds of jobs are submitted on a weekly or
monthly basis from January to May. From May to July, the
system is very quiet, perhaps due to the academic calendar.
From July through January, batches of thousands of jobs
are submitted periodically and system utilization is much
higher than the spring.

Figure 7 gives more detail about the success and failure
of jobs on a monthly basis. Jobs Submitted is the number of

Feature Mapping Top Split Most Significant
(FileSystemDomain = hep.wisc.edu) &&

Artifical Labels (FileSystemDomain = hep.wisc.edu) (TotalVirtualMemory > 10481808) &&
→ (C:104656 SE:22759 E:76056) (Mips ≤ 3455) →

(C:513 SE:11822 E:670)
(Mips > 2925) &&

Static Labels (Mips > 2925) (TotalVirtualMemory > 10481656) &&
→ (C:167094 SE:27732 E:152889) (KFlops ≤ 857509) →

(C:513 SE:11822 E: 670)

Figure 9. Decision Tree Analysis for All of GLOW.

Feature Mapping Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec
Artificial Labels 0.212 0.312 0.558 0.407 0.407 0.402 0.717 0.526 0.772 0.531 0.627 0.551

Static Labels 0.223 0.266 0.268 0.303 0.153 0.144 0.346 0.425 0.358 0.300 0.344 0.347

Feature Mapping cdf cmsprod engage glow ligo mis nanohub usatlas1 usmcs01
Artifical Labels 0.510 0.621 0.723 0.204 0.141 0.208 0.321 0.190 0.412

Static Labels 0.387 0.395 0.258 0.063 0.198 0.154 0.285 0.053 0.182

Figure 10. Comparison of Month and User Slices to Global Data via Rand Index

jobs arriving through the GRAM interface. Jobs Completed
is the number of jobs running to completion and indicating
success with an exit code of zero. Jobs Failed is the num-
ber of jobs running to completion, but exiting with a signal
or a non-zero exit code. Jobs Rolled Back is the number
of times in which a job is removed from an execution ma-
chine, either because it is removed by the local resource
manager, preempted by the global scheduler, or fails initial-
ize properly on that machine. In each of these cases, the job
is placed back in the queue and will have an opportunity
to run elsewhere. A job could be rolled back many times
in its lifetime. Jobs Aborted indicates the number of jobs
explicitly removed by the submitting user. Goodput is the
total amount of CPU time consumed that results in a suc-
cessfully completed job. Badput is the total amount of CPU
time that is consumed with any other result.

This table reveals more about the workload. First, it is
very clear that the sytem goes through very large cycles of
success and failure. In January, over 14,000 jobs are sub-
mitted, and most complete successfully with less than 10
percent badput observed. In February, failures and badput
significantly increase, but then tail off until the summer. In
July, there is an enormous increase: 68,236 jobs are submit-
ted, 34,000 fail, and 5,000 are aborted. This trend contin-
ues in August, but failures drop significantly in September.
This suggest that the initial attempts of users to harness the
grid do not go well, but after repeated attempts, the proper
formula is found, and a workload proceeds smoothly. For
our purposes, this data confirms earlier observations of large
numbers of failures in production grids.

Now, suppose that we assume the role of an administra-
tor overseeing this large computing system. If we apply our
data mining techniques, can we learn more about these fail-
ures, and use that knowledge to improve the system? This
problem is more potentially challenging because multiple

Label Info Gain
FileSystemDomain 0.5599
CkptServer 0.4272
UidDomain 0.3329
Mips 0.3132
Arch 0.3130
HasAFS Atlas 0.3079
TotalVirtualMemory 0.2893
IsGeneralPurposeVM 0.2856
IsGeneralPurposeSlot 0.2836
TotalMemory 0.2757

Figure 11. Most Significant Machine Labels

different users and workloads are all mixed together, and
may have varying rates of failure represented with different
weights according to the number of events.

That said, does it make sense to apply our classification
algorithm to the entire data set? The analysis of the en-
tire year completes in several minutes using non-optimized
code running on a conventional laptop, so the technique is
quite feasible for perform on a regular basis. The results are
shown in Figure 9. Using artificial labels, we observe that
failure is highly correlated with FilesystemDomain
== "hep.wisc.edu". This property indicates the set
of filesystems available from a machine. A job submitted
from one filesystem domain will not have access to the data
it needs, unless the user manually specifies needed data.
This is a common usability problem across many Condor in-
stallations, and appears to be a significant operational prob-
lem in GLOW. Using static labels, we can observe that fail-
ure is also correlated with fast machines (Mips > 2925).
This is a superset of the ”hep.wisc.edu” machines, so the
observation is correct, but not very helpful in diagnosis.

What happens if we perform the same analysis on dif-
ferent subsets? To answer this, we partitioned the data by
month and by VO and generated decision trees for each.

Rather than showing all those results, we compared each
tree against the global tree using an Adjusted Rand Index,
a measure of indicating the coverage similarity on a scale
from zero to one [17]. As can be seen in figure 10, there
is considerable variance across the dataset. In July and
September and with the Engage VO, the results are quite
similar. Other slices results in different top-level diagnoses.

To present these results compactly, we show the top
ten properties that are most significant with respect to fail-
ure by computing information gain within the decision
tree. The top five properties are all defined by the stan-
dard Condor configuration. The top three are administra-
tive properties that describe the available filesystems, the
nearest checkpoint server, and the user database. To a cer-
tain extent, all are correlated with administrative cluster-
ings. It is somewhat surprising that Mips and Arch have
equal significance. One would expect that Arch would
have higher significance, because it describes the compat-
ibility of programs with processors. Our hypothesis is
that these properties are accidentally correlated with the
more significant administrative properies, as seen in Fig-
ure 9. HasAFS Atlas, IsGeneralPurposeVM, and
IsGeneralPurposeSlot are artifical labels significant
to the local system. This suggests that there is much to gain
be defining custom properties within Condor.

Can we establish what workload or user is experiencing
this problem most heavily? To answer this, we adjust the
tool to alernate between job and machine properties in or-
der to successively refine the source of failures. First, we se-
lect the subset of machines where FilesystemDomain
== "hep.wisc.edu", then select the set of jobs that
failed on those machines, and then analyze the proper-
ties of those jobs. Despite the VO problem mentioned
earlier, the most significant property of those jobs is
X509UserProxySubject, which identifies the actual
person owning the GSI [10] credentials for the job. Sum-
ming up the number of jobs, we observe:

X509UserProxySubject Failing Jobs
/DC=gov/DC=fnal/O=Fermilab/CN=X 10998
/DC=org/DC=doegrids/OU=People/CN=Y 669
/DC=org/DC=doegrids/OU=People/CN=Z 145
/DC=org/DC=doegrids/OU=People/CN=W 10

To sum up, this technique, when applied to a year’s worth
of data from a production grid, immediately diagnosed the
label most associated with failure, which also turned out
to be the root cause. With guidance from the operator, the
tool also identified the end user directing the workload that
(depending on your perspective) suffered the most failures,
or caused the most trouble.

5 Related Work

Previous authors have observed the very high rates of
user-visible failures in grid computing systems. Grid3 [14]

(a predecessor of the Open Science Grid) observed a fail-
ure rate of thirty percent for some categories of jobs, often
due to filled disks. Iosup [18] observe that availability can
have a significant impact upon system throughput. In our
work, this is addressed in the sense that evictions (transition
to non-availability) are a kind of failures that can be system-
atically identified and avoided. Schopf [25] observed from
informal discussions with end users that troubleshooting is
a significant obstacle to usability.

Others have performed systematic techniques for trou-
bleshooting grids. Gunter et al. [16] describe a system for
collecting large amounts of data from a grid and a tech-
nique for observing outliers in continuous valued proper-
ties. Palatin et al [21] discover misconfigured machines by
correlating performance with labelled features, and select-
ing outliers. These have the common working assumption
that performance outliers are likely to represent bugs, an
approach suggested by Engler[8].

We have generally approached this problem as a mat-
ter of diagnosing past failures. Others have suggested pre-
dicting future failures. Duan et al [7] sketched a technique
for predicting future faults, but did not present results. Fu
and Xu [12] demonstrate a technique for predicting physical
failures in clusters base on time and space correlation.

There are a variety of systems for logging and collecting
information from large distributed systems, such as Gan-
glia [19], NetLogger [15], MAGNET [13] and MonAL-
ISA [20]. Any of these would be suitable data sources for
the analysis described here.

Another way of troubleshooting complex systems is to
study structure rather than labels. For example, DeWiz [24]
examines message passing patterns between components of
a distributed system to infer causal relationships. A similar
idea is black box debugging [1, 23], which identifies perfor-
mance bottlenecks. Pinpoint [3] tags data flowing through
complex systems and applies data mining techniques to sug-
gest individual components that are failing.

6 Conclusion

In this work, we have made the following observations:

• Production computing grids do exhibit a large number
failures. From firsthand experience, we believe this is
due to iteratively submitting workloads and diagnosing
failures until an acceptable performance is achieved.
Troubleshooting via data mining can reduce the time
to successful execution.

• By constructing a decision tree and selecting the most
significant decision points, we may easily draw cor-
relations that are strongly suggestive of root causes.
Both physical and logical labels are suitable for this
purpose, each leading to a different perspective on the
results.

• The same technique can be applied to large multi-user
workloads, but the troubleshooter must have additional
tools to subset and explore the data in order to draw
meaningful conclusions.

And, we offer the following recommendations:

• Other sites on the Open Science Grid should adopt the
logging behavior currently performed on GLOW. Al-
though there are logs at other layers of the system, they
do not contain the detail about intermediate failures
stored in the user job logs.

• User log files should record the complete ClassAd of
releavant machines at the time each event occurs. As
we have observed, machine properties can change be-
tween the time of execution and the time of obser-
vation, thus limiting the set of properties available
for troubleshooting. Some, like available disk space,
change very quickly. Others, like IP address might
change infrequently, but prevent associating job events
with machine logs.

• Both job submitters and machine owners are ad-
vised to include logical information directly in clas-
sads, even if it has no immediate functional pur-
pose. As shown in Figure 4 and 5, the non-functional
labels MachineGroup and Parameter1 yielded
succinct, intuitive results.

7 Acknowledgements

This work was supported in part by National Science
Foundation grant CNS-0720813. We are grateful to Dan
Bradley at the University of Wisconsin; Preston Smith
at Purdue University; Ryan Lichtenwalter, Christopher
Moretti, Tanya Peters, and Karen Hollingsworth at the Uni-
versity of Notre Dame for participating in this study.

References

[1] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging of black-box distributed systems.
In ACM Symposium on Operating Systems Principles, October 2003.

[2] N. V. Chawla, N. Japkowicz, and A. Kolcz. Editorial: Learning from
Imbalanced Datasets. SIGKDD Explorations, 6(1):1–6, 2004.

[3] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint:
Problem determination in large, dynamic, internet services. In Inter-
national Conference on Dependable Systems and Networks, 2002.

[4] D. Cieslak, D. Thain, and N. Chawla. Short paper: Data mining-
based fault prediction and detection on the grid. In IEEE High Per-
formance Distributed Computing, 2006.

[5] D. A. Cieslak and N. V. Chawla. Learning Decision Trees for Unbal-
anced Data. In European Conference on Machine Learning, 2008.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. Resource management architecture for
metacomputing systems. In IPPS/SPDP Workshop on Job Schedul-
ing Strategies for Parallel Processing, pages 62–82, 1998.

[7] R. Duan, R. Prodan, and T. Fahringer. Short paper: Data mining-
based fault prediction and detection on the grid. In IEEE High Per-
formance Distributed Computing, 2006.

[8] D. Engler, D. Chen, S. Hallem, A. Chaou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in system
code. In ACM Symposium on Operating Systems Principles, October
2001.

[9] P. A. Flach. The Geometry of ROC Space: Understanding Machine
Learning Metrics through ROC Isometrics. In ICML, pages 194–201,
2003.

[10] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security archi-
tecture for computational grids. In ACM Conference on Computer
and Communications Security Conference, 1998.

[11] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-
G: A computation management agent for multi-institutional grids.
In IEEE High Performance Distributed Computing, pages 7–9, San
Francisco, California, August 2001.

[12] S. Fu and C.-Z. Xu. Exploring event correlation for failure prediction
in coalitions of clusters. In Supercomputing, 2007.

[13] M. Gardner, W. chen Feng, M. Broxton, A. Engelhart, and G. Hur-
witz. MAGNET: A tool for debugging, analyzing, and adapting com-
puter systems. In IEEE/ACM Symposium on Cluster Computing and
the Grid, May 2003.

[14] R. Gardner and et al. The Grid2003 production grid: Principles and
practice. In IEEE High Performance Distributed Computing, 2004.

[15] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dynamic
monitoring of high-performance distributed applications. In IEEE
High Performance Distributed Computing, June 2002.

[16] D. Gunter, B. L. Tierney, A. Brown, M. Swany, J. Bresnahan, and
J. M. Schopf. Log summarization and anomaly detection for trou-
bleshooting distributed systems. In IEEE Grid Computing, 2007.

[17] L. Hubert and P. Arabie. Comparing partitions. Journal of Classifi-
cation, pages 193–218, 1985.

[18] A. Iosup, M. Jan, O. Sonmez, and D. Epema. On the dynamic re-
source availability in grids. In IEEE Grid Computing, 2007.

[19] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: Design, implementation, and experience. Paral-
lel Computing, 30, July 2004.

[20] H. Newman, I. Legrand, P.Galvez, R. Voicu, and C. Cirstoiu. Mon-
ALISA: A distributed monitoring service architecture. In Computing
in High Energy Physics, March 2003.

[21] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff. Mining for
misconfigured machines in grid systems. In International Confer-
ence on Knowledge Discovery and Data Mining, 2006.

[22] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In IEEE Sym-
posium on High Performance Distributed Computing, July 1998.

[23] P. Reynolds, J. Wiener, J. Mogel, M. Aguilera, and A. Vahdat. WAP5:
black box performance debugging for wide area systems. In Proceed-
ings of the WWW Conference, 2006.

[24] C. Schaubschlager, D. Kranzlmuller, and J. Volkert. Event-based
program analysis with de-wiz. In Workshop on Automated and Algo-
rithmic Debugging, pages 237–246, Septmber 2003.

[25] J. M. Schopf and S. J. Newhouse. Grid user requirements 2004: A
perspective from the trenches. Cluster Computing, 10(3), September
2007.

[26] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In
F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley, 2003.

