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Abstract— Neural networks are relatively successful in rec-
ognizing individual patterns. However, when images consist of
combination of patterns, a preprocessing step of segmentation is
required to avoid combinatorial explosion of the training phase.
In practical applications, segmentation is a context dependent
task which itself requires recognition. In this paper we propose
and develop a biologically inspired neural architecture that
can recognize and count an arbitrary collection of objects
even if trained with individual objects, without making use
of additional segmentation algorithms.

The two essential features that govern the neurons in this
algorithm are 1. dynamical feedback and 2. competition for acti-
vation. We show analytically that while the equations governing
the output neurons are highly nonlinear in individual feature
amplitudes, they are linear in groups of feature amplitudes. We
further demonstrate through simulations, that our architecture
can precisely count and recognize scenes in which three and four
non-overlapping patterns are presented simultaneously. The
ability to generalize numerosity outside the training distribution
with a simple learning scheme, lack of connection weights and
segmentation algorithms prove regulatory feedback networks
not only beneficial for machine learning tasks but also for
biological modeling of animal vision.

I. INTRODUCTION

In this paper we address the problem of recognizing mul-
tiple objects that appear together in arbitrary combinations,
with repetitions allowed. Since the total number of such
possible combinations increases exponentially as a function
of the number of objects, the amount of training required
by conventional parameter optimization techniques quickly
becomes unfeasible. This problem is known in the connec-
tionist literature as the Superposition Catastrophe [1][2]. A
common solution that overcomes this difficulty is to segment
the image before testing. Unfortunately segmentation is a
strongly domain dependent task; it requires prior knowledge
of what is to be segmented.

The purpose of this paper is to raise the question whether
the recognition of combination of objects can be han-
dled without using the conventional approach of parameter
optimization followed by segmentation. Instead, we sug-
gest an architecture motivated by a feedback-based “pre-
synaptic inhibition’ neural configuration found overwhelm-
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ingly throughout the brain. We analytically show how this
kind of network is able to recognize collections of objects
after being trained with single objects (except for the patho-
logical cases specified in section III.B). We demonstrate this
capability experimentally for various combinations of letters
as well as randomly generated patterns.

Counting requires an ability to contend with novel combi-
nations of previously learned patterns, thus nicely embodies
the above mentioned problem. Though several computational
models have been proposed to count [3]-[5], counting and
recognition without segmentation remains difficult. More
specialized counting methods focus on patterns with simple
features such as blood cells or pollen [6]-[8] or isolate
regions by utilizing template pattern matching algorithms
confined to local regions [9].

An ability to inherently analyze scenes and assess count
during recognition appears innate in humans and animals
[10][11]. The ability to perform without counting one-by-
one (segmenting) may be essential for survival, such as,
when determining an escape path from a predator pack. The
fact that our algorithm simply uses neurons and connections
without additional external algorithms suggests that it may
be a viable candidate for biological modeling.

Our method can be qualitatively described as an imple-
mentation of Self-Regulatory Feedback, where each input
is regulated by its own output nodes [12]-[16]. Though
connections are determined by supervised learning, they are
not trained in a conventional sense (i.e. through parameter
optimization) since there are no connection weights to op-
timize. A more general version of the regulatory feedback
networks that includes optimized connection weights has
been previously proposed [17]. However optimized weights
may be one of the causes that hinders the algorithms’
performance given novel combinations.

In our algorithm, patterns are presented as a scene, where
a common ’bag-of-features’ feature extractor decomposes
patterns equally across the whole scene into simple features
to be recognized. The number of instances of these basic
features are added across the scene. In the first set of
experiments 26 letter patterns are trained using a single
presentation of each. During testing, up to four simultaneous
letters are placed in the scene and using only the uniform
extractor information, the algorithm determines 1) which
letters are present 2) how many times the same letter is
present. In the second set of experiments the procedure is
repeated using randomly generated patterns instead of letters.



Fig. 1. Self Regulation. If x1 affects y1 and y2, then pre-synaptic feedback
f1 from y1 and y2 inhibits x1. Similarly if x2 affects y1, y2, y3, and y4

then f2 from y1, y2, y3 and y4 regulates x2

A. Network Structure

The tight association between inputs (via pre-synaptic
cells) and outputs (via post-synaptic cells) required by self-
regulatory feedback is depicted in fig(1). Each neuron is
regulated by the post-synaptic use of its information. The
activation of output i is governed by the nonlinear difference
equation

yi(t + 1) =
yi

Ni

∑

j∈Ri

fj (1)

with pre-synaptic inhibition term

fj =
xj

Yj

and feedback term

Yj =
∑

k∈Sj

yk(t)

For any post-synaptic cell i, Ri denotes the set of all pre-
synaptic cell connections and Ni denotes the number of
connections in Ri. For any input xj , Sj denotes the set of
all post-synaptic cells connected to it. The total amount of
feedback from post-synaptic cells to input xj is Yj . fj is
the input value after negative feedback. Self-Regulatory net-
works do not rely on weight parameters. Binary connections
are sufficient, simplifying connectivity and training [13][14].

The information xj can be fully expressed to the output
layer only if Yj = 1 (which occurs when inputs and outputs
are matched). If several post-synaptic cells are overly active,
no post-synaptic cell will receive the full activity of xj

because Yj > 1 thus fj < xj . Conversely, if xj is not
appropriately represented by the network Yj < 1 and the
input is boosted fj > xj . This negative feedback regulation
occurs for every input-output interaction.

The output state of the network at time t+1 is determined
by input and output states of the network at time t. The value
of each output node is computed using the inputs connected
to it, and the other outputs that share each of these inputs.
We iterate the network until all outputs converge to a fixed
point.

The iterative nature allows robust inference during the
recognition phase. The outputs {y} are bounded between
zero and a value determined by the inputs {x} and this class
of equations settle to a steady state [18].

Fig. 2. Feature Extractor. If a feature pattern is present anywhere in the
visual field, its feature node is incremented. The feature nodes serve as an
input vector to the classifiers.

This network implements a powerful multi-class classifier
that can process simultaneous patterns [12]. It maintains
a simple input-output connectivity where each unit only
connects to its own inputs, yet makes complex recognition
decisions based on distributed processing [16].

B. Data Representation

We run two sets of experiments. In the first, we prepare the
26 letters of the alphabet, each placed on a 5x5 pixel grid.
Any given pixel can be either black or white. These letters
are placed next to one other on a large grid arbitrarily, such
that the spacing is no less than 3 pixels.

In the second set of experiments we prepare the visual field
with combinations of 30 randomly generated 5x5 patterns.
The patterns are formed such that each pixel has a 1/2
probability of being on or off. We chose 4 of these 30
randomly generated patterns each time and place them next to
one other such that the spacing is no less than 3 pixels. Then
we test all possible occurrences of 4 simultaneous random
patterns.

C. Feature Extraction

The extractor is designed to be similar in spirit to the
feature extraction found in the primary visual cortex, and
is commonly used in cognitive models [19]. Each feature is
defined as a 3x3 black and white pattern(see fig-2). If the
pattern i is present anywhere in the visual field then xi is
incremented by one. Since a window of 5x5 can contain 9
different 3x3 windows, there are a total of 29 possible feature
vectors.

D. Training

To recognize patterns, one output (post-synaptic) cell is
designated for each letter. When the pattern of a letter is
encountered during the training phase, this activates a set of
feature cells. In other words, during training, if a feature xi

is present in a class j, the input node i is connected to the
output node that corresponds to class j. After this is done



for each class the connections are kept the same during the
testing phase. Note that no weights distinguish between the
features; each connection is either on or off.

II. ANALYTICAL RESULTS AND SIMULATION

Our results are in the form of derivations and simulations.
We first show that scaling all the inputs by c will lead to
a scaling of all outputs by c. Since the inputs correspond
to the number of features, and the outputs correspond to the
number of individual objects, it is reasonable to expect such a
scaling behavior. We then show that if we scale all features
corresponding only to particular object A by c (yet keep
the rest unchanged), then only the value of the output that
corresponds to A will scale (whereas the rest of the outputs
will remain unchanged).

Finally, we report the outcomes of our numeric simu-
lations, and demonstrate that our algorithm can count and
recognize combinations of letters and random patterns.

A. Superposition Ability of Regulatory Feedback Networks

It was shown earlier[18] that this class of networks con-
verge in the limit t → ∞. The condition for convergence
is

y(t + 1) = y(t).

Let’s denote the final value of each output by the subscript
0. The output vector ~y converges to ~y0 = (y01, y01, . . .), that
satisfies the equation

Ni =
∑

j

D
(0)
ij , (2)

D
(0)
ij =

xj∑
k y0k

.

If all inputs are scaled by a constant

x′i = cxi

then eqn(2) remains invariant when the outputs are scaled by
the same amount,

y′0i = cy0i.

In general, the same argument holds for the entire trajectory
of an output: If eqn(1) is satisfied by y(t), then

ỹi(t + 1) =
ỹi(t)
Ni

Ni∑

j=1

D̃ij

D̃ij =
cxj∑
k ỹk

is satisfied by ỹ(t) = cy(t). This means that if the number of
features of A is scaled by c, so must the output corresponding
to A.

Let us now demonstrate how the network reacts to separate
objects appearing in multitude. If the network is trained to
recognize two objects A and B individually, then the outputs

yA and yB , corresponding to the number of A and B satisfy
the equations

NA =
∑

j∈A∩B

xj

yA + yB
+

∑

j∈A/B

xj

yA
(3)

NB =
∑

j∈A∩B

xj

yA + yB
+

∑

j∈B/A

xj

yB
(4)

in steady state. Here A∩B denotes the set of input nodes that
are associated with the features common to A and B. A/B
and B/A denotes the input nodes that are associated with
the features of exclusively A and exclusively B, respectively.

If one A and one B appears together, we have the features

xj =
{

2 if j ∈ A ∩B
1 if j ∈ A/B or B/A

present and we observe that eqn(3) and (4) are satisfied for

yA = 1
yB = 1.

Now, if we scale the number of features of A by α, and that
of B by β, the common features will be scaled by α + β
and the above equations will converge to a new equilibrium
point y′A and y′B

NA =
∑

j∈A∩B

(α + β)xj

y′A + y′B
+

∑

j∈A/B

αxj

y′A
(5)

NB =
∑

j∈A∩B

(α + β)xj

y′A + y′B
+

∑

j∈B/A

βxj

y′B
(6)

Thus, if yA = 1 and yB = 1 satisfies eqn(3) and (4), then

y′A = α

y′B = β

must satisfy eqn(5) and (6).
We proved that even though our output cells have a non-

linear dependence to individual input activations, they have
a linear dependence to particular groups of input activations.
While the former property enables recognition, the latter
enables counting. The mentioned linearity is primarily due
to our use of binary connections and pre-synaptic inhibition
instead of connection weights.

Note that we only showed that the ~y(t) that corresponds to
“counting’ is a solution of our governing equations, but have
not shown that this solution is unique. In fact it is not, and
we will discuss such cases in more detail in section III.B.

B. Simulations

Since the governing equations may diverge when certain
outputs reach the value zero, if at any time a node takes the
value 0, it is replaced by a small number (10−7). We take
the initial conditions of each node to be a random number,
uniformly distributed between 10−7 and 1.

Two types of “scenes’ are simulated: One composed of
three letters simultaneously and the other composed of four
letters simultaneously. In each case the letters are separated
further apart than three squares, the width of the feature



Fig. 3. Examples of Multiple Pattern Scenes. Training with single letters
(top). Testing with three letters (bottom left) and four letters (bottom right)

extractor window. Hence the feature extractor never gets
overlapped features. After the nodes converge to a fixed point
we report the activity values of the labeled letter nodes.

In scenes of separate letters i.e. ’a b c’ each corresponding
node converges to a value of 1, and all others to zero. With
one repeat, i.e. ’a a b’ the corresponding repeated node
converges to a value of 2, the non-repeated node converges to
a value of 1, and all others to zero. When three letters are the
same, i.e. ’a a a’ the node corresponding to the repeated letter
converges to a value of 3, capturing all the activity. All other
nodes converges to zero. Regardless of scenario, the summed
activity of all nodes is 3. All 17,576 possible combinations
of 3 letters fall into these three categories capturing both
recognition and counting.

We repeat this procedure with four letters and get the
same outcome. In scenes of separate letters i.e. ’a b c
d’ each corresponding node converges to a value of 1.
With one repeat i.e.. ’a a c d’ the corresponding repeated
node converges to a value of 2, while single letter nodes
converges to a value of 1. With double repeats i.e. ’a a b b’
corresponding repeated nodes both converges to a value of 2.
With triple repeats i.e. ’a a a b’ the corresponding repeated
node converges to a value of 3. With quadruple repeats i.e.
’a a a a’ the repeated node converges to a value of 4. In all
possible 456,976 four letter combinations, the activity across
all nodes sum to 4.

We then present the network with all 26 letters occurring
together. All output nodes converge to 1.

In order to show that our algorithm is not only limited
to letters, we generate 30 random patterns and test our
algorithm with all possible (repeating and non-repeating)
combinations of 4. As is with the case of letters, in each case
the corresponding node converges to the correct number of
patterns with 100% success rate.

III. DISCUSSION

We demonstrate the ability of regulatory feedback net-
works to recognize and count multiple letters in a scene
without resorting to segmentation algorithms. This outcome
is possible because our method overcomes the superposition
catastrophe problem by avoiding both parameter optimization
and segmentation [12][1]. After learning to recognize only
single letter patterns, regulatory feedback networks are able
to correctly recognize and count simultaneous combinations
of those letters (tested on all combinations of 3 and 4 simul-
taneous letters). Subsequently this is optimal for situations
where simultaneous patterns may emerge.

A. Limits and Future Work

The main limitation to this model’s applicability is that
learning is not as generalizable as conventional algorithms. In
part this is due to the newness of this method and its inherent
nonlinearity leading to difficulty deriving general learning
rules. It also requires a developing a new set of learning rules
that address inherent limits of the model itself. Its limits can
be summarized as A. Generality of features (two defining
features appearing together must not constitute a separate
defining feature) and B. Flexibility of training (currently our
method does not allow for variations within a class).

B. Generality of Features

Let x1 and x2 be the defining features of classes A and B
respectively. In problems where the appearance of xA and xB

constitutes the defining feature of a third class C, our network
may or may not yield the desired outcome. We call such
x1 and x2 pairs “dependent features”. We can demonstrate
what happens in these cases by looking at the steady state
equations,

NA =
x1

yA + yC

NB =
x2

yB + yC

NC =
x1

yA + yC
+

x2

yB + yC
.

When x1 and x2 are both 1, the third equation is simply
a linear combination of the first two. Therefore we are left
with two equations and three unknowns,

1 =
1

yA + yC

1 =
1

yB + yC

Even though the desired outcome {yA, yB , yC} = {0, 0, 1}
satisfies these equations, in general one could end up with
any vector of the form {1 − u, 1 − u, u}, for 0 < u < 1,
depending on the initial conditions. In order to resolve these
cases, the learning algorithm must be able to either redefine
features, or increase the dimensionality of the problem by
adding new defining features that are “independent”. A trivial
way of doing this is to use a feature extraction windows



of varying sizes and shapes. Ideally speaking, the number
of dimensions of ~x should be greater than or equal to the
number of dimensions of ~y.

C. Flexibility of Training

Even though this architecture can cope with noisy data
[12] we do not have a uniform way to learn variants
of characteristic patterns (such as different fonts). This is
because our simple training scheme consists of forming
binary connections according to a single sample. One way of
extending the training algorithm to data with more variation
is by introducing extra layers to the network; whenever the
network comes across a drastically different rendition of a
letter, say B instead of B, it could form a new node and
dedicate this to the different rendition, yB and then connect
this to the node that corresponds to the usual rendition yB
in a hierarchical fashion. This way activity in either yB or
yB will stimulate a third node that corresponds to the letter
B. Another way of extending training is through clustering
methods which can take several data points and produce an
averaged prototype.

D. Relevance Beyond Counting

We showed that if extracted features are summed across
the visual field, then the self regulatory feedback networks
can sum (count) complex objects. A similar relation holds
for any function. If a different function combines extracted
features ~x the same function will apply to ~y. For example
Webers Law states that the minimum amount of noticeable
sensory intensity scales linearly with the total amount of
sensory intensity. The law applies for light, sound, motor
senses, and has been reported to occur within cortical regions
of the brain [20]. By analogy if a function that follows
Webers law determines the input layer combinations of ~x
then that function will appear in the output ~y, in accordance
the biological findings [20]. Further quantitative analysis is
the subject of a future study.
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