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Morphological inversion of complex diffusion
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Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process
on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial
node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the
final state of a complex network. Our method performs better than algorithms based on distance (closeness) and
Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model,
and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic,
pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic
infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.
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A sugar piece placed in tea will erode and eventually
dissolve. Given the initial shape of the piece, it is trivial to
predict its final distribution. However, the opposite problem
of determining the initial state, given a final one is extremely
difficult. Problems of the latter kind are referred as ill-posed
inverse problems [1–3].

Diffusion taking place on networks, in the forward direc-
tion, is well studied. One class of models originally used to
describe epidemics is the susceptible-infected-recovered (SIR)
model [4,5]. Variations include SI, SIS, SIRS, etc. Others
include more realistic delay conditions, such as an incubation
period for the infection [6]. Similar models are used to
describe neural cascades [7], traffic jams [8], and infrastructure
failures [9].

Accordingly, a successful method of inverting diffusion on
complex networks can help identify patient zero in an epidemic
outbreak, pinpoint neurons that trigger a cognitive cascades,
remedy the parts of the road network that initiate congestion,
and determine malfunctions that lead to cascading failures.
In the weak selection limit, evolution can be thought of as
diffusion on a genotype network [10,11], so diffusion inversion
may be used to identify ancestral species.

Here we address the problem of identifying the origin of a
diffusive process taking place on a complex network, given the
its final state. We refer to the influenced nodes as the candidate
set C. Any member of C may be the node from which the
diffusion originated. We refer to this node as the seed, s, and
to the forward model as M .

Presently, there are two approaches to identify s. The first
uses probability marginals from Bayesian methods [12–21]. In
some cases, it is possible to sample the state space using Monte
Carlo simulations [13]. However, this is only feasible for small
networks. Message-passing algorithms can approximate the
marginals efficiently [12,14–16]; however, these algorithms
are model specific: For every M , one must invent new approx-
imations, heuristic assumptions, and analytic calculations.

In contrast, the second class of methods works independent
of the forward model [14,17–19]. These presuppose that s

should be approximately equidistant to all other nodes in C,
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and therefore, nodes with high “centrality” values should have
a higher likelihood of being s. This assumption breaks down if
the spread reaches “boundaries” or if the spread self-interacts
(i.e., if the network contains many loops rather than being a
tree or a dynamic like SIS).

Here we present a method that can determine the origin
of a diffusive process taking place on a complex network,
regardless of what the diffusion model is, without the draw-
backs of centrality-based methods. We take as inputs the
network structure, the candidate set C and the forward model
M . In return, we output a list of nodes, ordered according
to the likelihood of being the seed s. We emphasize that
our method has no free parameters and is applicable to
any M , including both deterministic and stochastic forward
models.

To evaluate our success, we performed simulations in the
forward direction using four types of forward models on three
different graph topologies. We then inverted the final state
and determined how often our guess is the true seed. We also
measured the error distance, i.e., the distance of our guess from
the true seed.

The forward models we explored are susceptible-infected
(SI) epidemic model with uniform propagation probability
between neighboring nodes; an information cascade (IC)
model which propagates the diffusion like the SI model but
with an additional cascade effect based on the fraction of
infected neighbors [22]; a collective behavior (CB) model
based on the notion that social behavior is determined by
threshold for when the benefit of an action is greater than its
cost [23]; a heterogeneous SI model where the propagation
probability has a directional bias (DB) based on spatial
positions of the nodes.

The network topologies on which we evaluate our model
consist of a real power grid (GRID) network of the western
states of the USA [24], a real protein (PROT) interaction
network of C. elegans [25], and a synthetic scale-free (SCLF)
network based on the power grid network.

The spread time was selected such that none of the networks
tested was fully saturated by the spread. This allows the final
state to retain some unique characteristics that can be used to
identify the seed. We did not explore cases for low propagation
probability and large spreads in order to maintain a consistent
total simulated time, T = 5, for all models.
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I. GENERALIZED MORPHOLOGICAL OPERATORS

The principle behind our method can be best described
by the language of mathematical morphology pioneered by
Minkowski, Matheron, Serra, and others [26–28]. A morpho-
logical operator modifies every point in a set (e.g., an image)
according to the spatial arrangement of neighboring points.
A stencil, called the “structuring element,” with a predefined
shape is placed on individual points, and if the surroundings of
the point match (or not match) the shape of the stencil, then the
point is modified. One particular operator, erosion, is important
for our purpose. Erosion deletes all points whose surroundings
mismatch the structuring element. Since a mismatch would
typically happen near the boundaries of a shape, the erosion
filter ends up rounding up and thinning down all shapes. This
is the qualitative behavior we need in order get rid of the
peripheral nodes of C and reach its core.

To suit our specific purpose, we define a new morphological
operator analogous to erosion, but with three important
differences (Fig. 1). First, our structuring element is not fixed,
but changes according to where it is placed on the network.
Furthermore, our structuring element does not have sharp
edges but is fuzzy. To be precise, we take the structing element,
when placed on node i, to be P (r,j |i), for node j in state r

which we compute numerically.
Second, the comparison of the structuring element and the

surrounding nodes of i is not binary but weighted. This is
because mismatches of deterministic events (e.g., P (r,j |i) ∼
0 or 1) matter more than random events (P (r,j |i) ∼ 0.5). To
be precise, we weight every node mismatch with a factor
inversely proportional to the binary entropy Hb[P (r,j |i)].

Third, the final effect of processing a node with a structuring
element is not simply deleting or keeping. Instead, this too is
fuzzy. In the end, upon applying our morphological operator
to the network once, we expect the least eroded node to be the
seed.

Our algorithm generates an ordered list of candidate seeds
based on how much they are eroded. The best-case scenario is
when the true origin is located at the top of this list. Figure 1
schematically shows an evaluation of the match between an
erosion stencil and the given network state along with an
example of classical image erosion.

II. METHOD

The structuring elements are generated by directly sampling
the states of the network model. For each forward model
(defined explicitly in the next section), we applied the selected
diffusion dynamics 500 times for every node in the network
and calculated the structing element, P (r,j |i), based on the
normalized frequency of finding node j in state r due to the
diffusion starting from node i.

We define a convergence condition for our stencils based
on the average absolute error of the probabilities after moving
to a higher sample size. For a sample size n, we require that the
average error, δP , be less than 1% after moving to a sample
size of 5n:

δP = max
λ∈(0.1,0.5,0.95)

∑
i,j

|P 5n
λ (i|j ) − P n

λ (i|j )| � 0.01.

Candidate Nodes

Nodes not affected
by the diffusion

Eroded Nodes

(e)

Un illed Pixel

Filled Pixel

Eroded Pixel

Seeds

Stencil

(a) (  )b

(  )c

FIG. 1. Example of classical erosion (a,b), our generalization
(c,d), erosion on a network (e). (a) The structuring element (“stencil”)
is placed on individual pixels whose neighborhoods are checked for
a match or mismatch. (b) Pixels are eroded if there is a mismatch
with the stencil. In the end, shapes lose their outer layers. (c) The
network and candidate set (solid fill) is given while the seed (dark
star) is unknown. (d) The erosion stencil (gradient fill) for candidate
i (light star) is applied over the network. Smiley faces show the
locations where the stencil matches the given network state, question
marks show locations of high variability, and sad faces show regions
where the stencil does not match the candidate set. Note that the
planar representation for the stencils does not mean that our stencils
are limited to planar graphs. All nodes are part of the stencil for
any given node for a general diffusion dynamic. (e) An example of
deterministic diffusion of a single seed for one discrete time step.
The necessary stencil is one in which all neighbors are affected by
the diffusion but no one else because there is not enough time to reach
anything outside of direct neighbors. For this reason, the node in the
top left was also eroded.

Naturally, the error will depend upon the diffusion parameters
and the network topology. However, we found that it is
reasonable to just sample the errors using the largest network
for a subset of the diffusion parameters. For the most part, our
algorithm converges very quickly where the final sample size
for the stencils was 500 runs for each node in the network.

The idea behind our morphological filter is to determine
which stencil has the best match with the given diffusion
state. The likelihood of a node being the origin node is
proportional to the similarity between its stencil and the
diffusion state. However, there are many ways to measure the
similarity between a probability vector and a binary vector.
We sampled the performance of different scoring metrics such
as log-likelihood (under independent three-body correlations),
information surprisal, and Picard distance. The results shown
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in this paper are based on the an information theoretical metric
which we found to work best. For each node i inside the
candidate set C of the given final network state, we apply an
erosion score:

Si =
∑

j

1 − P (rj ,j |i)
Hb(P (rj ,j |i)) ,

where the weight Hb(x) = −x log2 x − (1 − x) log2(1 − x) is
the binary entropy for the two-state diffusion, rj is the state
of node j in the given final network state. In other words,
Si measures the mismatch between the stencil and diffusion
state weighted by the (binary) entropy, Hb, of the probability
distribution. This weight will diminish the value of nodes with
high variability (p ≈ 0.5) in comparison to nodes with low
variability (p ≈ 0 or p ≈ 1). If the probability that a node is
affected is very high or very low, then mismatches are weighted
heavily and have a large negative influence on Si . On the other
hand, the state of highly variable nodes are circumstantial,
and thanks to the small entropic weight they do not have
much influence on Si . Note that the score for candidate node
i examines its stencil element, P (r,j |i), at every other node
j . In other words, the stencil for any node involves all other
nodes in the network and not just the nodes in the set C.

Once we have Si for all i, we sort these in ascending
order and pick the nodes with best (i.e., lowest) scores.
Numerically, the entropic weight can result in a division by
zero and therefore instead of directly using P (r,j |i) we used
P (r,j |i) + ε, where ε = 10−20 is small enough to not change
the degree of variability and instead provides an upper bound
for a highly unexpected mismatch. If the relevant forward
dynamics is one where nodes can take more than two states,
then the binary entropy function should be updated to be the
entropy for the probability stencil of node i causing node j to
be in state r:

H = −
∑

r

P (r,j |i) loge P (r,j |i).

The error bars generated are based on the standard deviation
of our results. For each network topology and diffusion model,
we simulated 500 realizations of the diffusion in order to test
the performance of our algorithm. We separated these into
5 sets of 100 simulations by random assignment. We then
calculated our performance inside each of the sets separately
and used their standard deviation for our errors. We then
repeated the random assignment 100 times and averaged over
all of the standard deviations. This removes the dependence on
how the simulations were randomly assigned as well as provide
a measure of error for a trial containing 100 simulations.
Additionally, some realizations will not have a candidate set
larger than one when the spread probability is very small. We
simply remove these cases from our calculation and therefore
the actual sample size for low λ (≈250) is lower than for
λ > 0.80% (500).

III. NETWORKS AND FORWARD DYNAMICS

To evaluate our inversion scheme, we used a protein-protein
interaction network [25], a power grid network [24], and
a synthetic scale-free network. Our diffusion dynamics are
discrete in time and are fully described by the probability that

an “infected” node spreads to a susceptible neighbor. The SI
model is defined by the probability pij = λAij Ij of an infection
spreading from j to i, where Aij is one when nodes i and j

are connected by an edge and zero otherwise and Ij is one
if node j is infected and zero otherwise, which simplifies to
j infecting i with probability λ = [0.05,0.1, . . . ,0.95] only if
the two nodes are adjacent and j is infected.

The IC model cascades the information spread based on the
state of a critical fraction of neighbors, ν = 0.5, via

pij =
{

1,
∑

j Aij (Ij − ν) � 0,

λAij Ij ,
∑

j Aij (Ij − ν) < 0.
(1)

The CB model spreads the adaptation of a social behavior
when the number of neighbors who have adopted the behavior
reaches an absolute threshold, μ = 2, via

pij =
{

1,
∑

j Aij Ij � μ,

λAij Ij ,
∑

j Aij Ij < μ.
(2)

The DB model uses heterogeneous diffusion probabilities
pij = Bij Ij , where Bij = Aij (p0 + δp cos[ �dij · �b]). The DB
model is generated by first randomizing the three dimensional
positions for all nodes placed uniformly random inside a uni-
tary cubic volume and then calculating the unit displacement
vector, �dij , between graphically (Aij = 1) adjacent nodes. We
then picked a unit bias vector, �b, pointing toward one of the
corners of the volume, and generated the weighted adjacency
matrix Bij based on a neutral transmission probability p0 =
[0.2,0.4,0.6,0.8] and range δp = 0.15.

IV. DISTANCE AND JORDAN CENTRALITY

The origin of a diffusion process can prima facie be ex-
pected to be found near the “center” of the candidate set. Thus,
we compare our results with two benchmark methods based
on centrality measures (Fig. 2). Centrality-based methods
calculate the distances between pairs of candidate nodes (i,j ),
Dij , inside the subgraph generated by only their connections.
This means that each diffusion will require a new calculation of
the distances because the candidate nodes will generally never
be the same set of nodes. The distance (closeness) centrality
Di of a node i refers to the total distance between node i and
all other candidate nodes j :

Di =
∑
j∈C

Dij .

This method assumes that the node which has the least distance
to all other candidate nodes is the most likely seed. The Jordan
centrality Ji of a node i is concerned only with the largest
distances between node i and all other candidate nodes.

Ji = max
j∈C

Dij .

Similar to the distance centrality, this method assumes that
the most likely candidate node is the least distant to all other
candidate nodes.
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FIG. 2. Performance on different networks and models as a function of the transmission probability λ, for T = 5 (larger is better). The
protein interaction network (n = 3744,m = 7749), power grid network (n = 4941,m = 6594), and scale-free network (n = 4941,m = 6601)
are shown in each column. The four dynamic models are shown in each row. Note the difference between the uniform transmission probability,
λ, for isotropic diffusion and the neutral transmission probability, p0, for anisotropic diffusion. Our performance (solid lines) is almost always
better than centrality-based methods (dashed and dotted lines of the same color) based on a total of 500 runs. Light red and dark blue curves
denote whether the true seed is the top one or within top three choices returned, respectively. For the power grid network, both cases overlapped
because the candidate set is small. The error bars represent ± one expected standard deviation for an average of 100 runs. In general, our
performance closely matches the two centrality methods but becomes noticeably better as λ or p0 increases.
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V. NUMERICAL ALGORITHM

Given a graph G(V,E), forward diffusion model, total time
T , and realization R to be inverted, we enumerate the necessary
steps to use our algorithm:

(1) Generate the candidate set C based on R. For SI
dynamics, the set C contains every node which is in state I .

(2) For every node i ∈ C, apply the diffusion dynamic for
total time T and repeat for a total of M independent trails.
Record the probability that node j ∈ V was in state r , P (r,j |i).

(3) Calculate the erosion score for every node i ∈ C via

Si =
∑

j

1 − P (rj ,j |i)
Hb(P (rj ,j |i)) .

(4) Assign ranks to every candidate node based on their
scores. The lowest score has the first rank and is the most
likely candidate based on our erosion.

Our current scheme is based only on SI-type dynamics.
For dynamics with additional states such as SIR or SIRS, the
candidate set must be carefully considered. In the most simple
case, the candidate set can be the entire graph. The erosion
score must also use the entropy rather than the binary entropy.

VI. RESULTS

Many authors use distance error as a metric of success
[13,14,19,21]; however, the usefulness of this metric is
ambiguous. Although a two-hop range constitutes a small
fraction of the network (0.2%,1%,5% for GRID, SCLF, and
PROT, respectively), such small percentages still correspond to
a significant absolute number of nodes (10, 50, and 210 nodes
for GRID, SCLF, and PROT respectively). We provide the
results for the distance error of our algorithm in the Appendix
and here only focus on the probability of finding the true
seed and the rank distribution of the true seed. All simulated
runs were done on the Notre Dame Center for Research
Computing’s High Performance Computing clusters.

Figure 2 shows how often the true seed is our top guess and
how often it is within our top three guesses. The bold solid
lines show the performance of our algorithm, while the dashed
and dotted lines show the performance of methods based on
distance centrality and Jordan centrality. Our success rates are
far above the dashed and dotted curves of the same color, with
the only exception of the low-λ regime of the IC model.

Figure 3 show the ranking spectrum for the true seed using
the three methods for λ = 0.2 (p0 = 0.2) and T = 5. The
protein and scale-free network has a heavy tail in comparison
to the grid network because the spread can quickly reach
many more nodes within T = 5 on the protein and scale-free
network.

On average, the radius of C is 〈r〉 = T λ nodes. As λ → 0,
there are few nodes to pick from and thus centrality-based
methods, including just randomly selecting a node from
C, give similarly high success rates as our method. As λ

is increased, however, the difference between our method
and others increase significantly. The difference in success
is maximal when the number of affected nodes become
maximum, at λ → 1. Across all forward models, we have the
least success when the spread probability λ ∼ 0.5, the regime
with the highest number of possible states due to the high

variability in the stochastic process. This variability causes
the calculated average stencil to very rarely match a given
diffusion state.

VII. DISCUSSION

In general, stochastic dynamics on networks will be defined
in terms of local properties rather than global ones. To this
extent, we explored two main variations to a local property, i.e.,
models in which fractional versus absolute number of affected
neighbors determine the spread probability. We have also
shown that our algorithm performs well for nonuniform and
directionally biased diffusion. Hence, we have explored, nearly
to full extent, the inversion of two-state diffusion processes on
complex networks.

Our algorithm is a general method for determining the
source of diffusion dynamics on complex networks. While
the generation of morphological stencils requires knowing the
dynamic law as well as the states of all nodes at some final time,
our approach works for all models. In contrast, other inversion
schemes are model specific [12,16,19,20]. Even though our
inversion scheme works for any model, it is not model invariant
like the centrality-based methods which uses only topological
properties in the graph. The core part of our algorithm relies
on an erosion of the diffusion surface by the diffusion stencils
for each point in the spread. We need to know the specifics of
the forward model in order to generate these diffusion stencils.

The performance of our algorithm may be improved by
degeneralizing the scoring function to accommodate particu-
larities of a forward model. We also note that there are many as-
pects of the problem we have not yet considered, such as cases
of incomplete or noisy information, dynamics of multistate
diffusion, and even multisource diffusion [12,13,15,16,20,21].

Such generalizations should be within reach: In the case
of multisource, one could generate a scoring metric which is
nonsymmetric against the diffusion state. In other words, the
scoring could prioritize matching the diffusion state rather than
the base state. In the case of multistate diffusion, one could
introduce a transition matrix for the states where the elements
of this matrix represents how easy or difficult it is to transition
from one state to another. This matrix must be embedded into
the scoring metric such that mismatches in state are weighted
by the elements of this matrix. Additionally, some methods use
a reduction scheme which considers more complex dynamics
as two compartments. For example, Ref. [13] uses a SIR
dynamic but then groups the status of I and R into a single
compartment for their Jaccard similarity measure, which uses
a binary status.

We now compare and contrast our method with another
that is most similar in spirit to ours. Antulov-Fantulin et al.
[13] uses a Jaccard similarity function to characterize the
similarity between simulated spreads versus a given spread.
This is then used to estimate the probability of a spread
given a source via a Gaussian weighting and therefore we
will refer to this method as the Jaccard-Gaussian algorithm.
This method compares two network states, i.e., two binary
vectors (nodes are either infected or susceptible) as obtained by
Monte Carlo simulations versus a given final state. To compare
two microstates of networks, Ref. [13] must generate, store,
and compare all (or at least, most) possible realizations of
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FIG. 3. Probability that the true seed is a high-ranked node for all models and dynamics using λ = 0.6 (p0 = 0.6) T = 5 (lower rank
is better). The protein interaction network (n = 3744,m = 7749), power grid network (n = 4941,m = 6594), and scale-free network (n =
4941,m = 6601) are shown in each column. The four dynamic models are shown in each row. The protein and scale-free networks have larger
spreads than the grid network and therefore will have a larger distribution for the rank sizes. Our method (solid lines) generally outperforms
the two centrality methods based on a total of 500 runs. Note that Jordan centrality provides much better performance than distance (closeness)
centrality. The error bars represent ± one expected standard deviation for an average of 100 runs.

a spread from every single candidate node. In contrast, we
work with a single probability distribution defined over the
network. Since the space of all possible N -node states (which
Ref. [13] samples) is astronomically larger than the space of
single node states (which we sample), we can leverage this gain

in computational cost to sample our space more accurately. Our
approach has another advantage: A forward model uniquely
determines a stencil, and once we have our stencils for a certain
model, we can use it for multiple C sets, say, for different
realizations of the same disease. Reference [13], on the other
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FIG. 4. Our method vs the Jaccard-Gaussian method developed
by Antulov-Fantulin et al. in Ref. [13] on the scale-free graph
(n = 4941, m = 6601). (a) Probability of finding the true seed within
top 1 (light red) and top 1% (dark blue) candidate nodes. Overall, the
Jaccard-Gaussian method has better performance when λ < 0.5, after
which our method is better. In all cases, both methods were limited
to using the same set of 134 simulated runs (stencil), where each data
point was generated from independent test sets of 500 runs. However,
only runs which satisfies the Jaccard-Gaussian convergence condition
[Eq. (3)] were used in these plots. (b) How often a highly ranked node
is the true seed (λ = 0.7, T = 5). Both methods used the same set
(stencil) of 667 simulated runs for their algorithms. The spectrum is
generated from testing the performance of each method for 500 runs.
Additionally, the error bars were generated by randomly selecting
100 runs and calculating the deviation from average across all runs.
Therefore, the error bars represent the expected standard deviation
for a sample size of 100 runs.

hand, must realistically sample a combinatorially larger space
for every realization of the spread. Another difference with
Ref. [13] is in our scoring function; specifically, we use an
entropic weight when comparing a single realization to a
probability distribution. This allows us to decide which nodes
to take more seriously than others.

We have implemented the Jaccard-Gaussian algorithm and
its performance is plotted against our method in Fig. 4.
The Jaccard-Gaussian algorithm relies upon a convergence
condition in order to select the width parameter used in its
Gaussian weighting. We follow the convergence condition
defined in the supplementary material of Ref. [13]:

|Pn(θmap) − P2n(θmap)| � 0.05, (3)

where Pn refers to the candidate probability distribution using
a stencil of n simulated runs and θmap refers to the most likely
candidate node inside P2n. Additionally, the two probability
distributions were generated from independent simulations.
We used the same set of potential Gaussian widths as Ref. [13]
and selected the smallest weight for which the convergence
condition is satisfied. We generated a stencil of 200 runs for
different values of the transmission parameter λ and T = 5
and stored these runs for testing the performance of our
algorithm against the Jaccard-Gaussian algorithm. In all cases,
the available information is the same for both algorithms.
However, the convergence condition for the Jaccard-Gaussian
method limits the stencil set from 200 to 134. Therefore, we
limit our algorithm’s stencils to use the same 134 simulated
runs as well.

To test how the performance is affected by the stencil size,
we again generated a stencil set of 1000 runs for λ = 0.7
and T = 5. The convergence condition limits the final stencil
used to 667 runs for both methods. The spectrum of the true
seed’s ranking in both methods are shown in Fig. 4(b). From
Fig. 4(a), the probability of finding the true seed (λ = 0.7) for
our method and Jaccard-Gaussian method is 0.5890 ± 0.0419
and 0.3653 ± 0.0422 respectively. When the stencil size is
increased to 667 runs, these scores become 0.5776 ± 0.0430
and 0.3744 ± 0.0377 for our method and Jaccard-Gaussian
method respectively. Although the Jaccard-Gaussian method
should be improved with a larger stencil size, the amount of
simulations required can be quite large.

We conclude our discussion with the limitations of our
inversion scheme. As usual, there is a tradeoff between
accuracy and generality. Our method should not be expected
to perform better than methods that are custom tailored to
specific models. By studying the specific dynamics, one can
generate additional constraints and properties of the dynamics
such as tree topology, exact analytical solutions, conservation
laws, etc., that might aid in inversion [17,19]. Furthermore, the
performance of our algorithm can be enhanced by extending
what we have done with two-body correlations to n-body
correlations or time-dependent correlations to calculate path
integrals based on Bayesian inference (e.g., Ref. [12] for one
specific model). However, generalizing such approaches for
any forward model and any network topology is offset by the
huge number of simulations required to resolve the correlations
to within a useful error margin and will be very costly.
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APPENDIX

We calculate, for the convenience of comparison to other
authors, the performance of our algorithm based on the
distance between our top candidate and the true seed in Figs. 5,
6, and 7. A distance error of zero means that we correctly
identified the true seed.

The average size of the diffusion is plotted for different
topology, network, and transmission probabilities in Fig. 8.
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FIG. 5. Error distance δ for the power grid network (n = 4941, m = 6594). δ is the distance between the top candidate and the true origin.
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FIG. 6. Error distance δ for the scale-free network (n = 4941, m = 6601). δ is the distance between the top candidate and the true origin.
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FIG. 7. Error distance δ for the protein interaction network (n = 3744, m = 7749). δ is the distance between the top candidate and the true
origin.
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FIG. 8. Average diffusion sizes.
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