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Abstract
Ecology and evolution under changing environments are important in many subfields of biology with implications for 
medicine. Here, we explore an example: the consequences of fluctuating environments on the emergence of antibiotic 
resistance, which is an immense and growing problem. Typically, high doses of antibiotics are employed to eliminate the 
infection quickly and minimize the time under which resistance may emerge. However, this strategy may not be optimal. 
Since competition can reduce fitness and resistance typically has a reproductive cost, resistant mutants’ fitness can depend 
on their environment. Here we show conditions under which environmental varying fitness can be exploited to prevent the 
emergence of resistance. We develop a stochastic Lotka-Volterra model of a microbial system with competing phenotypes: 
a wild strain susceptible to the antibiotic, and a mutant strain that is resistant. We investigate the impact of various pulsed 
applications of antibiotics on population suppression. Leveraging competition, we show how a strategy of environmental 
switching can suppress the infection while avoiding resistant mutants. We discuss limitations of the procedure depending 
on the microbe and pharmacodynamics and methods to ameliorate them.

Keywords Antibiotic resistance · Changing environments · Competition · Lotka-Volterra · Microbial ecology · Pulsed 
antibiotic treatment

Introduction

Populations will face a variety of environmental fluctuations 
of both biotic and abiotic nature. Since phenotypes typi-
cally have different reproductive success in differing envi-
ronments, the dynamics of these fluctuations can be crucial 
in determining phenotypic composition. Here, we consider 
the effects of varying environments on the emergence and 
maintenance of antibiotic resistance.

The rise of microbial resistance is a looming catastro-
phe, and prudential use of antimicrobials is a fundamental 
means to prevent it (Laxminarayan et al. 2013). Such strat-
egies to limit the chance of resistance can be made at all 

levels of disease dynamics, from population-level protocols 
to individual patient therapies. Studies of antibiotic resist-
ance in vivo, in hospitals, and in the community at large 
using mathematical models can help address the pharmaco-
dynamics, pharmacokinetics, and epidemiology of resistance 
(Lipsitch and Levin 1997; Bonhoeffer et al. 1997; Austin and 
Anderson 1999; Czock and Keller 2007; Gloede et al. 2009; 
Greulich et al. 2017; Nielsen and Friberg 2013). Such mod-
els have found use in effectively modeling real-world experi-
mental data (Tam et al. 2007; Schmidt et al. 2009; Bhagunde 
et al. 2011; Nielsen et al. 2011). In particular, modeling has 
been used in identifying dosing regimens that suppress the 
emergence of resistance (Tam et al. 2005, 2008).

There are several mechanisms by which bacteria can be 
resistant to antibiotics (Poole 2002), an example of which 
is overexpression of the efflux pump (Borges-Walmsley 
et al. 2003; Webber and Piddock 2003; Sun et al. 2014), 
which bacteria use to expel antibiotics. Typically, such 
resistant mechanisms have a fitness cost, which can result 
in trade-offs between resistance and growth (Martínez and 
Baquero 2002; Ender et al. 2004; Wang-Kan et al. 2017; 
Basra et al. 2018). Example costs of resistance include less 
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energy for other cellular processes, and impaired motility. 
When the antibiotic is present, the resistant mechanism 
pays for its cost by providing a fitness advantage relative 
to the susceptible strain. However, when the antibiotic is 
not present, the resistant mechanism incurs a fitness disad-
vantage. Resistance, therefore, can be reversed under evo-
lutionary forces by altering the environment (Andersson 
and Hughes 2010). As such, a pulsed protocol, where the 
antibiotic is periodically applied so that the environment 
switches from antibiotic to antibiotic-free regimes, may be 
able to eliminate the bacteria. However, there is a risk that 
resistant mutants evolve to reduce the fitness cost of resist-
ance rather than lose the resistance mechanism, whereby 
they could be competitive whether the antibiotic is present 
or not (Olivares Pacheco et al. 2017). Further, mutations 
in regulatory genes can produce phenotypes of irreversible 
resistance (Van Bambeke et al. 2000). These risks can crip-
ple pulsed protocols aimed at controlling the infection while 
preventing resistance. Preventing a sustained presence of 
resistance is therefore a high priority.

Here, we develop a mathematical model of pulsed proto-
cols of antibiotic and antibiotic-free regimes, switching rap-
idly from one environment to the other, to control a bacterial 
population. We consider concentration-independent (i.e., 
time-dependent) bactericides such as �-lactams (e.g., peni-
cillins and cephalosporins), which require high maintained 
concentrations to be effective (AliAbadi and Lees 2000). We 
assume that there is a maximum benefit to the concentration 
amount (due either to the pharmacodynamics of the bacteri-
cidal mechanism or tolerance of the patient to the antimicro-
bial). Therefore, we fix the dose concentration when applied 
and find the proper periods for each regime that prevent the 
emergence of resistance while eliminating the infection.

Previous theoretical studies have shown that pulsed proto-
cols of antibiotics can eliminate bacteria (Kussell et al. 2005; 
Cogan 2006; Cogan et al. 2012; Acar and Cogan 2019). 
However, these studies feature a “persistent phenotype,” 
that neither grows nor dies under application of the anti-
microbial agent (Balaban et al. 2004; Zhang et al. 2012). 
Bacteria may transition between the persister type and wild 
type, depending on the environmental conditions. The num-
ber of persisters remain at low levels and act as a staging 
ground for the bacteria to repopulate after the antimicro-
bial is removed. Pulsed protocols of antibiotics, however, 
can disrupt this process and lead to the elimination of the 
bacteria. Experimental studies have shown that pulsed pro-
tocols can be effective in controlling such a system (Sharma  
et al. 2015).

Although pulsed protocols can eliminate non-persister and 
persister colonies, they have more difficulty in eliminating 
colonies with resistant phenotypes that can grow when antibi-
otics are present. However, these protocols have been shown 
to be effective in containing an infection both theoretically 

and experimentally (Baker et al. 2018; Hansen et al. 2020). In 
such cases, antimicrobials can act as ecological disturbances 
and can be approximately as effective as a constant applica-
tion of the antimicrobial in controlling the bacterial load while 
also diminishing the probability of the emergence of resistance 
(Baker et al. 2018). With short durations of high concentra-
tions of drugs, the period under which resistance is selected 
for can be minimized.

The above studies have explored pulsed protocols in differ-
ent ways: controlling persisters, and controlling emergence of 
resistance. The resistant strain we consider here does grow in 
the presence of antibiotics, and thus are not persisters. Our sce-
nario is thus more similar to, and an extension of, Baker et al. 
(2018). Our main contribution is to show how leveraging com-
petition can not only suppress the emergence of resistance as in 
Baker et al. (2018), but also reduce the overall bacterial load. 
Additionally, we explore the impact of other important mecha-
nisms on pulsed protocols including the evolvability of the 
bacteria and the lethality of the antibiotic. We compare these 
results to a protocol of constant application. Though pulsed 
protocols can, on average, outperform a constant application, 
constant applications are more likely to completely eliminate 
the bacteria. However, they are also more likely to result in 
an uncontrolled population of resistant mutants. Thus, with 
pulsed protocols we aim to mitigate the emergence of resist-
ance and reduce the risk of the evolutionary escape from the 
antibiotic.

The key mechanism of our models in suppressing the 
population is competition between the two phenotypes. 
Two common models of microbial competition are resource-
competition models (Baker et al. 2018) and the competi-
tive Lotka-Volterra equation (Stein et  al.  2013; Gonze 
et al. 2018). The latter of which we employ here. Competi-
tion can be low when the total size of the population is small 
(e.g., the population is well below the carrying capacity or 
there is a high amount of resource relative to the number of 
bacteria). In such a case, both phenotypes can grow. Yet, 
we can still suppress the number of resistant bacteria and 
the average bacterial load over time. We explore the impact 
of various parameters and pulsed protocol durations on the 
average bacterial load over time. Our models also features 
stochasticity, which we develop in a stochastic kinetic frame-
work (Wilkinson 2011). We show that only when selec-
tion against the resistant type is high when the antibiotic 
is not applied can pulsed protocols effectively control the 
population.

Methods

Stochastic birth-death processes are widely used in biologi-
cal modeling (Novozhilov et al. 2006), and, in particular, 
stochastic modeling of the Lotka-Volterra system (Huang 
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et al. 2015). Our stochastic model features processes of 
birth, death, competition, and mutation, as detailed in Box 1. 
These processes operate on two phenotypes X and Y, which 
represent a wild-type strain, which is susceptible to the anti-
biotic, and a mutant strain, which is resistant, respectively.

Consider first the dynamics of the birth and death pro-
cesses without the presence of antibiotics, i.e., in the antibi-
otic-free regime. Reaction set 1 represents these processes, 
where b and d are the birth and death rates, respectively, 
for the wild-type strain with b > d > 0 . We assume that the 
death rate for the resistant strain is also d. However, resist-
ance frequently comes at a fitness cost: a reduced growth 
rate relative to the wild type (Nagaev et al. 2001; Gagneux 
et al. 2006; Nilsson et al. 2006; Sandegren et al. 2008). Thus, 
we assume that the birth rate is reduced by a cost b > c > 0 
for resistance. The birth rate of the resistant strain is thus 
b − c (costs applied to birth rather than death rates have 
also been applied similarly in ecological games (Hauert 
et al. 2008)).

In the presence of the antibiotic, the above processes still 
occur, but with an additional set of reactions involving the anti-
biotic. Since we are considering a concentration-independent 
or time-dependent antibiotic, we will assume that the amount 
of antibiotic, Ā , remains unchanged while we are in the anti-
biotic regime. At the maximum dose Ā = 1 , normalized. The 
antibiotic is bactericidal and kills both types of bacteria. Reac-
tion set 3 represents death from the antibiotic with rates � and 
�′ for the susceptible and resistant strains, respectively. Note 
that for X to be susceptible and Y to be resistant, we must have 
𝛼 > b − d > c + 𝛼�.

Competition dominates microbial interactions (Foster 
and Bell 2012) whereby bacteria compete over nutrients 
or space (Ghoul and Mitri 2016). Bacteria also engage in 
direct antagonism such as by the production of bacteriocin 
to inhibit the growth of competitors (Bucci et al. 2011). Fre-
quently in Lotka-Volterra systems, intra-specific competi-
tion is assumed to be greater than inter-specific. As such, 
the rate of death would be greater for competition between 
bacteria of the same type than those that are different. How-
ever, since the wild-type and mutant strains are so heavily 
related, their niches heavily overlap and they would both 
require similar nutrients. Therefore, competition would be 
expected to be high (Coyte et al. 2015). Further, since the 
population is well-mixed, we would expect the interactions 
to be frequency dependent and not biased toward intra- 
specific competition. Reaction set 2 details the processes by 
which the bacteria die from competition with others. Death 
occurs due to a bacterium losing access to nutrients or space; 
the loser receives less or none and thus has some chance of 
dying. Let � be the rate at which two bacteria compete over a 
critical resource in a well-mixed population. When bacteria 
of the same type meet and compete, the chance of either 

one dying would be the same. However, the cost of antibi-
otic resistance results in a loss of competitive ability (Letten 
et al. 2021), and thus a wild-type is more likely to survive 
competition with a mutant, and the mutant is less likely to 
survive in such an encounter. We use a Moran-like process 
(Moran et al. 1962) in determining which bacterium wins 
and which loses when two meet and compete. The rate at 
which a focal bacterium survives is its fitness divided by the 
fitness of its opponent, i.e., the relative fitness of the focal 
bacterium. Fitness then is a proxy for the competitiveness 
of each type. Such a process is common in the theoretical 
literature in modeling competition (Taylor et al. 2004; Imhof 
and Nowak 2006; Fudenberg et al. 2006) and particularly 
local competition in spatial settings (Roca et al. 2009). Fit-
nesses in our model are the growth rates of each type: b − d 
and b − c − d for wild-type and mutant strains, respectively. 
If the focal type and its competitor are the same type, then 
the relative fitness is equal to one and therefore death occurs 
at rate � . For the wild-type vs the mutant, relative fitness is 
� ∝ (b − d)∕(b − c − d) for the wild-type vs the mutant, and 
thus 1∕� for the mutant vs the wild-type. Note that we do 
not set the relative fitness � = (b − d)∕(b − c − d) , but rather 
proportional to it. Since, competition may scale nonlinearly 
with respect to relative fitness.

Bacteria of one type can produce mutants of the other type 
at rate � , which occurs in both regimes (Reaction set 4). How-
ever, under the stress of the antibiotic, resistant mutants will 
arise from wild-type bacteria at a higher rate 𝜇′ > 𝜇 . Mutations 
are an important mechanism leading to antibiotic resistance 
(Martinez and Baquero 2000; Woodford and Ellington 2007), 
including single-point mutations (Andersson and Hughes 2011; 
Meka et al. 2004a, 2004b). Additionally, resistance from single 
mutational events tend to be costly (Melnyk et al. 2015). For 
example, consider the loss of flagellar function in Pseudomonas 
aeruginosa, which alone can give a fitness advantage in the 
presence of an antibiotic, and is costly relative to the wild type 
when no antibiotic is present (Rundell et al. 2020). Single muta-
tions can also lead to overproduction of efflux pumps, which 
can provide resistance (Lister et al. 2009). Then, in an antibi-
otic-free environment, mutations can restore impaired function, 
reverting the bacterium to the wild type. And, competition from 
any remaining wild-type bacteria can out-compete the resistant 
mutants.

The environmental switching is controlled by a choice of 
the “on” and “off” durations of the drug. We assume 100% bio-
availability of the drug at application, e.g., intravenous applica-
tion. Thus, when the antibiotic is “turned on,” its effects are 
immediate. Further, when it is “turned off,” the dissipation of 
the antibiotic, i.e., the rate at which it breaks into ineffective 
material, is metabolized, etc. is rapid, which is common for 
concentration-independent and time-dependent antibiotics. In 
the antibiotic regime, we apply the maximum effective dose. 
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Thus, the set of pulsed protocols we consider are sequences 
of durations of the regimes, where Ā = 1 when the antibiotic 
is “on” and Ā = 0 when it is “off”.

We conducted numerical simulations of the model to test 
the effects of various protocols. We average realizations for 
each parameter combination. Using Julia’s DifferentialEqua-
tions and Catalyst packages (Rackauckas and Nie 2017), we 
simulate the dynamics as a stochastic differential equation 
(chemical Langevin equation); the equations of which are 
explicitly displayed in the SI Appendix. Table 1 lists the default 
parameter values used with rates per hour. We vary these val-
ues to explore nearby parameter space. We assume that a new 
generation occurs after 1∕(b − d) = 1 hour. We estimate that 
the relative fitness of the resistant strain in the antibiotic-free 
environment is (b − c − d)∕(b − d) ≈ 0.8 ⟹ c = 0.2 per 
hour, which is within experimentally evaluated values (Melnyk  
et  al.  2015). Our default value for the mutation rate is 
� = 10−9 . Under stress from the antibiotic, the mutation rate 
can be larger, up to ten times the non-stressed rate (Kuban 
et al. 2004). Thus, we consider �� = 10� . We assume that 
resistant bacteria die from the antibiotic at one tenth the rate 
susceptibles do (Coates et al. 2018). As such, we fix the death 
rate of mutants via the antibiotic to �� = 0.1� . The initial con-
dition is a population of 100% susceptible bacteria, X0 = 109 . 
We explore a variety of competition parameters � . We consider 
fixed “on/off” durations, where we repeat switching until the 
population is extinct or 14 days have elapsed.

Box 1: Stochastic Lotka‑Volterra processes

(1)Birth/death: X
b

→ 2X Y
b−c
→ 2Y X

d

→ � Y
d

→ �

(2)
Competition: 2X

�

→ X 2Y
�

→ Y XY
�∕�
→ Y XY

��

→ X

(3)Death via antibiotic: ĀX
𝛼

→ ∅ ĀY
𝛼′

→ ∅

(4)Mutation: X
𝜇(1−Ā)+𝜇�

Ā

⟶ Y Y
𝜇

→ X

Results

First consider the behavior of the system when the antibiotic 
is present or absent. In either case, both types will coexist at 
equilibrium due to mutations, though the less adapted type 
will remain at low frequency. In the antibiotic-free environ-
ment when the population size is low, competition will also 
be low, which can allow both types to grow in abundance. 
However, the higher the competition term � , the smaller this 
region is. A large � will cause the mutant strain to be sup-
pressed, which increases the chance that the mutant strain 
will be eliminated. In the remainder of the results, we detail 
the effects of switching the drug “on” and “off,” competition, 
and stochasticity.

Figure 1 depicts a representative time series for a switch-
ing protocol vs. a constant application of the antibiotic. With 
a sufficient competitive disadvantage for resistance, i.e., high 
� , we can effectively suppress the average bacterial load over 
time and resistant bacteria relative to a constant applica-
tion as depicted in Fig. 1b (pulsed protocol) and a (constant 
application). Though Fig. 1a depicts a specific instance 
where the mutant becomes established under the constant 
application protocol, resistance can be prevented by rapid 
elimination of the population. Since the mutations and fluc-
tuations in abundances are stochastic, it is possible that we 
are fortunate and constant application drives the population 
extinct before resistance emerges. Thus, to better understand 
the effectiveness of therapies we must evaluate the statistics 
of the bacterial load as a function of system parameters. We 
will show that constant application of an antibiotic tends to 
lead to either extreme: elimination of the entire population, 
or the establishment of a majority resistant population.

Averaged over 200 realizations, we calculate average 
bacterial load over time for pulsed protocols with various 
“on” and “off” durations and compare these to the bacterial 
load for constant application of the antibiotics. We plot these 
results in heat maps, where the color indicates the long-
term bacterial load relative to the outcome from constant 
antibiotic application. Red indicates that the pulsed therapy 

Table 1  Summary definitions of 
parameters

Parameter and default value Definition

b = 1.4 per hour Birth rate
c = 0.2 per hour Cost for resistance
d = 0.4 per hour Death rate
� = 1.6 per hour Death rate of the wild-type via antibiotic
�� = 0.1� = 0.16 per hour Death rate of the mutant via antibiotic
� = 10

−10 per cell per hour Competition rate
𝜅 > 1 Death rate of mutants from competition with the wild-type
� = 10

−9 per hour Mutation rate
�� = 10� = 10

−8 per hour Stress-induced mutation rate of susceptible to resistant bacteria
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is on average worse than constant application, yellow is on 
average equal, and blue indicates that it is on average bet-
ter. We observe that pulsed protocols along a diagonal do 
best. One reason for this is that the switching times explored 
here are much less than the time to reach carrying capacity 
in either regime. For example, even a day-period protocol 
will not reach carrying capacity (the expected time to reach 
carrying capacity is between one and two days). In such 
a case, the population can swing from predominantly one 
type to the other (see the SI Appendix for an example time 
series). However, this behavior can still be beneficial, since 
each application of the antibiotic is another chance of elimi-
nating the population, since switching environments drives 
the dominant type down potentially to extinction before the 

other type can become established. Another pertinent fact 
is that the total dose of antibiotic over the whole treatment 
period differs between the protocols. In particular, the region 
above the diagonal has lower total doses than the region 
below it. Nonetheless, such protocols can be more effective 
than those with a greater total dose: Figs. 2, 3, 4, and 5. 
Further, increasing the “on” duration from the diagonal can 
result in worse outcomes than decreasing it. In addition to 
plotting heat maps, we plot the average bacterial load over 
time for constant and pulsed protocols for various values of 
each parameter averaged over 200 realizations. The dura-
tions the antibiotic is “on” and “off” are each 2hrs.

Figure 2 shows that the higher the competition, the lower 
the diagonal (i.e., the best results come from protocols 

Fig. 1  Representative time series for resistance emerging under con-
stant application, panel a, and results for a pulsed protocol (“on” and 
“off” for 2hrs each), panels b-d. Blue are wild strain and red resistant. 
Constant applications can lead to mutant take over (a) whereas pulsed 
protocols can suppress the bacterial load (b). � = 1.6 and � = 4 in 

both panels a and b. However, if we increase the antibiotic kill rate 
to � = 1.8 while keeping the other parameters unchanged, the pulsed 
protocol fails (c). X

0
= 10

9 wild-type strain bacteria, and the remain-
ing parameters, if not mentioned here, are from Table 1
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where the duration “on” is greater than the duration “off”). 
The increased competition suppresses the emergence of 
resistance even in the antibiotic environment, and thus the 
duration of application can be longer. We also observe an 
intermediate level of competition is best for pulsed proto-
cols relative to constant application. We can see this effect 
in Fig. 2g. Increasing � decreases the average of the bac-
terial load of the individual realizations for the constant 

application as we would expect. Since, high competition 
between the types will suppress the emergence of resist-
ant mutants (which is true in both environments). However, 
increasing competition has an initially steeper effect upon 
pulsed protocols before it levels off. A sufficient amount 
of competition is required for pulsed protocols to work. As 
� is increased, the difference between the outcomes of the 
two protocols decreases. For high � , constant applications 

Fig. 2  Heatmaps of the average bacterial load over time from pulsed 
protocols relative to that of constant application of the antibiotic for 
� = 1, 2, 4, 8, 16, 32 (panels a–f). Protocols that matched the average 
outcome of the constant application therapy are colored in yellow. 

Those protocols that did worse are in red, and those that did better are 
in blue. Panel g depicts the average bacterial load over time for con-
stant and pulsed (2hrs “on” and “off” each) for various � . The points 
are the results for individual realizations and the curves their average
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outperform pulsed ones. We can also see this effect in the 
bacterial load, which changes non-monotonically with �.

Another reason for the angle of the optimal diagonal of 
successful protocols is due to the relationships between the 
mean growth rates and the antibiotic kill rates. Figure 3 
depicts the results for various values of � . Note that in each 
case we vary the death rates via antibiotics for both the 

wild-type and mutant type by setting �� = 0.1� . The higher 
the antibiotic kill rate, the shorter the duration on for the 
most successful protocols. Like in the case of � , � impacts 
the effectiveness of pulsed protocols nonlinearly. Figure 3g 
depicts the mean results for various � . The higher the � , the 
better constant application does. However, this is not true for 
pulsed protocols. An intermediate value is best. This result 

Fig. 3  Heatmaps of the average bacterial load over time from pulsed 
protocols relative to that of constant application of the antibiotic for 
� = 1.2, 1.4, 1.6, 1.8, 2, 2.2 and � = 4 (panels a–f). Protocols that 
matched the average outcome of the constant application therapy 
are colored in yellow. Those protocols that did worse are in red, and 

those that did better are in blue. Panel g depicts the average bacterial 
load over time for constant and pulsed (2hrs “on” and “off” each) for 
various � . The points are the results for individual realizations and the 
curves their average
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is due to the impact of � on competitiveness. If � is too high, 
then the wild-type is suppressed too much, and thus cannot 
be used to suppress the mutant strain through competition. 
Figure 1c depicts a time series of the case where � is too 
high, resulting in failure of the pulsed protocol. Increasing 
competition � , however, can mitigate this effect, shifting the 
minimum to the right (see the SI Appendix for an example).

To explore how robust our results are to mutation rates, 
we considered various values of � and �′ . We can see the 
effects of various � in the rows of Fig. 4, which show that the 
pulsed protocols are more effective under a higher mutation 
rate. The first row depicts the case where there is a stress-
induced mutation rate from wild-type to mutant ( �� = 10� ). 
The second row depicts the results where stress does not 

Fig. 4  Heatmaps of the average bacterial load over time from pulsed 
protocols relative to that of constant application of the antibiotic for 
� = 10

−10
, 10

−9
, 10

−8 , �� = 10�,� , and � = 4 (panels a–f). Protocols 
that matched the average outcome of the constant application therapy 
are colored in yellow. Those protocols that did worse are in red, and 

those that did better are in blue. Panel g depicts the average bacterial 
load over time for constant and pulsed (2hrs “on” and “off” each) for 
various � . The points are the results for individual realizations and 
the curves their average
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increase the mutation rate ( �� = � ). The stress induced 
mutation makes the antibiotic environment more conducive 
to generating resistance, and thus makes it harder to control 
the emergence of resistance. Figure 4g shows that the muta-
tion rate impacts the constant application more so than the 
pulsed protocol. This result matches intuition; the higher 
the mutation rate, the less likely a constant application can 
eliminate the colony before a mutant arises and becomes 
established. In summary, the more evolvable the system, the 
better switching environments works.

In Fig. 5 we explored the effect of varying the contact 
rate � , and observed that switching was more effective for a 
low � . For a high � , the region where both types can grow is 
small, which magnifies the impact of stochastic effects lead-
ing to elimination of emerging mutants. Further, same-type 
competitive interactions are also more intense, and thus the 
population is driven to extinction more quickly. Figure 5d 
shows that the effectiveness of both constant application and 
pulsed protocols increases as � increases (and thus the car-
rying capacity is lower). However, the gap between the two 

shrinks. Thus, for a high � system, the average of the bacte-
rial load of the individual realizations for the constant appli-
cation is similarly to the low level of the pulsed protocol.

Discussion

Mathematical modeling has been important in the fight 
against resistance through increasing our understanding 
of the dynamics and emergence of resistance (Opatowski 
et al. 2011). This paper contributes to this endeavor by show-
ing that the average bacterial load over time can be reduced 
and the emergence of resistant mutants can be mitigated via 
pulsed protocols. Previous research has shown that pulsed 
protocols with sufficiently long periods between switching 
can eliminate the population while rapidly changing envi-
ronments are ineffective (Marrec and Bitbol 2020). Our 
model would also exhibits this behavior. Long durations 
between pulses can (re)establish the wild-type (see the SI 
Appendix for a time series example). Upon application of 

Fig. 5  Heatmaps of the average bacterial load over time from pulsed 
protocols relative to that of constant application of the antibiotic for 
� = 10

−11
, 10

−10
, 10

−9 and � = 4 (panels a-c). Protocols that matched 
the average outcome of the constant application therapy are colored 
in yellow. Those protocols that did worse are in red, and those that 

did better are in blue. Panel d depicts the average bacterial load over 
time for constant and pulsed (2hrs “on” and “off” each) for various � . 
The points are the results for individual realizations and the curves 
their average
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the antibiotic, the population would then either be eliminated 
or rescued by resistant mutants. However, in a clinical set-
ting, this may not be feasible. Though quickly varying the 
environment can often not eliminate the population, it can 
suppress the bacterial load and resistance. This strategy can 
be thought of as “playing to not lose,” which contrasts with 
a constant application (or long durations) where the bacteria 
are either eliminated or resistance flourishes (i.e., “playing 
to win or lose”) (Fischer et al. 2015).

We found that pulsed protocols only work when competi-
tion is sufficiently high (though not too high). Else, at low 
population levels, resistance can be maintained. Further, the 
transition from an ineffectively competition level to a higher 
effective one occurs abruptly. We observe a rapid increase in 
the effectiveness of pulsed protocols as the competition level 
is increased from a low level ( 𝜅 < 4 ). For higher competi-
tion levels ( � ≈ 4 and greater), the effectiveness of pulsed 
protocols do not change. However, the effectiveness of the 
constant application does improve, reaching and then sur-
passing the pulsed protocol for high competition rates. This 
result is because the increased competition places sufficient 
pressure on resistant mutants that they only rarely become 
established. Previous empirical and theoretical research has 
also found the importance of high competition in containing 
an infection (Hansen et al. 2020). Further, pulsed protocols 
and competition can be effective in containing an infection 
even in a well-mixed population (Hansen et al. 2020). Spa-
tial effects, such as those found in biofilms, could heighten 
the degree of competition and thus the effectiveness of the 
pulsed protocols. Since, spatial heterogeneity due to clump-
ing could keep the competition level between different types 
high even when the population is small relative to the car-
rying capacity. The competition effects we consider can be 
interpreted crudely as arising from such effects. However, 
we note that the high degree of inter-specific competition 
that we have considered is a key assumption of our model. 
It is a common assumption in many theoretical papers in 
the literature, and a reasonable one; but we should caution 
that it need not hold true universally for all microbes in all 
environments. Accordingly, the conclusions of this paper 
should be accepted cautiously and in the light of this impor-
tant fine print.

Our findings offer several general recommendations for 
pulsed drug therapies. For one, pulsed protocols are pri-
marily effective when the emergence of resistance is likely, 
such as in large populations and those with high mutations 
(whether innately or under stress from the antibiotic). Pulsed 
protocols are also expected to be effective for intermediate 
degrees of competition and antibiotic kill rates. When com-
petition is light or fierce or when the antibiotic is weak or 
very strong, constant applications of antibiotics are likely 
to be more effective. The optimal proportion of time for a 
pulsed protocol in the antibiotic-regime would, in general, 

be decreasing with respect to the antibiotic kill rate. Since, 
less time is needed to suppress the wild-type, which also 
reduces the likelihood of mutant expansion. This effect is 
why we observe the shifting of the diagonal curve up in 
Fig. 3. However, the greater the kill rate, the greater the 
chance of the constant application eliminating the bacteria 
before resistance can emerge. That is why in that same Fig-
ure the effectiveness of pulsed protocols decreases. Higher 
competition between types ( � ) increases the effectiveness of 
suppression in both regimes. Thus, less time is needed dur-
ing the antibiotic-free regime to suppress mutants (which is 
better to avoid mutations emerging), yet also more time can 
be spent in the antibiotic regime killing the wild-type. In our 
case, decreasing the wild-type in the antibiotic regime had 
the greater benefit, and so the optimal proportion of time 
on increased with � as observed in Fig. 2. The improve-
ment in suppressing resistance in the antibiotic regime can 
lead to constant applications outperforming pulsed applica-
tions as in Fig. 2g. This would not be the case if competition 
favored resistant mutants in the antibiotic regime (such as if 
antibiotics tended to hamper but not directly kill the wild-
type bacteria). Increasing the competition through � drives 
the population down in both pulsed and constant therapies: 
growth is inhibited, fewer bacteria are present, and mutants 
are less likely to arise. The results for both pulsed and con-
stant therapies converge to the same outcome (Fig. 5d). The 
relationship between the times in each environment is also 
an important factor. To suppress resistant bacteria through 
competition and pulsed protocols, we must maintain the pop-
ulation of wild-type bacteria, and not let it become weak. We 
can see the implication of this in Fig. 1. Figure 1b has a rela-
tively robust population of wild-type bacteria, while Fig. 1c 
has a much smaller one, which permits resistance to emerge 
and dominate. To minimize the emergence of resistance, we 
would recommend maintaining the wild-type population at 
the highest acceptable population size.

There are several other relevant biological and technical 
factors that could impact the effectiveness of pulsed proto-
cols. For one, bactericides with significant post-antibiotic 
effects (PAEs), such as fluoroquinolones, may hamper our 
control strategy. Antimicrobials can impact the bacteria at 
sub-MIC levels long after they have been removed from the 
system (Shojaee AliAbadi and Lees 2000), and as such can 
select for resistant bacteria after the antibiotic is no longer 
applied. Additionally, sub MIC levels can lead to multidrug 
resistance through radical-induced mutagensis (Kohanski 
et al. 2010). Therefore, we must have a rapid dissipation 
of the antibiotic once below the MIC to prevent selection 
for the mutant (the range between the MIC and the point 
at which the susceptible strain is selected for) (Gullberg 
et al. 2011). PAEs are frequently caused by antibiotics that 
impair DNA functioning. Hence, �-lactams, which inhibit 
cell wall production, are a good choice for our therapies. 
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Antibiotics with a short half-life would also be effective 
with our protocols. Though not explored extensively here, 
we consider PAEs resulting from degrading antibiotics in the 
SI Appendix, where we show that increasing the half-life of 
the antibiotic can decrease the effectiveness of pulsed pro-
tocols. However, pulsed protocols that were ineffective can 
become effective due to PAEs. Essentially, the PAEs extend 
the period the antibiotic is “on,” which can be counteracted 
by having a longer “off” period.

Intermediate drug concentration and monitoring of the 
bacterial load are other aspects that we did not consider 
here. The effects of concentration on the spread of the dis-
ease due to within host and between host dynamics have 
been found to be an important factor (Scire et al. 2019). It 
is not always beneficial to have a high concentration due 
to a U-shaped probability of resistance emerging vs. drug 
concentration (Day and Read, 2016). Here we only consid-
ered a specific concentration for all applications. We also 
restricted ourselves to the case where the system cannot be 
well monitored. Clearly, the best strategy is to alter the dura-
tions dependent on the state of the system, which can both 
maximize the duration of the antibiotic regime and prevent 
the emergence of resistance. The more repeated applications 
of the treatment, the less likely it will work. However, such 
observations may not be feasible, especially when the bacte-
rial load is small and heterogeneous.

Future models could incorporate other biological factors. 
For example, the setting and source of resistance (source-
sink dynamics) are important factors in controlling antibiotic 
resistance (Perron et al. 2007). The method by which resist-
ance is spread is another important factor such as where 
plasmids confer resistance. In such a scenario, resistance can 
reemerge rapidly. Since, plasmids can remain in the popula-
tion due to horizontal transfer even when the plasmid confers 
a cost (Lopatkin et al. 2017). Although, the transfer rate has 
been show to dramatically fall once the population is low 
(Händel et al. 2015). Compensatory mutations could also 
be added by which the cost to resistance could be reduced 
(c or � could be reduced). However, we did explore the case 
where c = 0 , and found that though pulsed protocols were 
less effective than when there was a cost, they could still 
suppress the population and resistance (see the SI Appen-
dix for these results). Future models could also incorporate 
more of the complexity of interactions between the bacteria 
and the patients’ natural flora (Wade et al. 2016; Estrela and 
Brown 2018).

More generally, our work fits within the theory of con-
trolling evolving populations. Which, outside of bacteria, 
has been used to study cancer (Komarova 2006; Katouli 
and Komarova 2011; Fischer et al. 2015) and which fami-
lies of chemotherapies will work best. Adaptive therapy 
aims to leverage evolutionary and ecological principles 
such as competition to treat cancer (Enriquez-Navas 

et al. 2015; Gatenby and Brown 2020; West et al. 2020). 
An adaptive therapy technique, like ours here, is to retain 
chemosensitive cells so that they may suppress chemore-
sistant ones via competition (Gatenby et al. 2009). Our 
results, qualitatively, may have implications for such strat-
egies in managing cancer. More generally, our model can 
be viewed as control of “species” in conflict under directed 
actions of an external force (in our case, the application 
of antibiotics) or under environmental fluctuation (which 
could be undirected). Though our aim here has been to 
lower the overall bacterial load, we have shown how alter-
nating environments can prevent one species dominating 
thereby sustaining coexistence. This temporal heterogene-
ity in competitiveness can thus act as a stabilizing mecha-
nism that promotes diversity (as measured by the relative 
proportions of each type over time). This observation has 
broader theoretical implications to abundance and diver-
sity of phenotypes or species competing with one another. 
In a switching environment, intermediate levels of interac-
tion between different phenotypes or species can result in 
higher diversity, e.g., in our case, both phenotypes may 
coexist when the environment is varying while a constant 
environment leads to extinction or the resistant strain dom-
inating (i.e less relative diversity than if both types coexist 
at low levels). Though our model is within a framework 
of bacterial competition, this phenomenon would apply to 
competitive Lotka-Volterra systems under environmental 
switching more generally. As such, we envisage further 
research that explores such phenomena under scenarios 
other than control of antibiotic resistance and through 
models related to our own.
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