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Many physical, biological and social phenomena can be described by cascades taking place on
a network. Often, the activity can be empirically observed, but not the underlying network of
interactions. In this paper we offer three topological methods to infer the structure of any directed
network given a set of cascade arrival times. Our formulas hold for a very general class of models
where the activation probability of a node is a generic function of its degree and the number of its
active neighbors. We report high success rates for synthetic and real networks, for several different
cascade models.

I. INTRODUCTION

Neural networks, ecosystems, epidemics, range expan-
sions, gene-protein interactions, diffusion in evolutionary
landscapes and many other interesting biological and so-
cial phenomena are naturally encoded by cascades on
complex networks. Often we can observe when people
adopt certain ideas, but we cannot see what social ex-
changes lead to it. We can observe when species go ex-
tinct, but do not know why [1]. We see when the same
content appears in several websites and blogs over time,
but since we do not know who copied from whom, we
cannot tell who follows who [2]. A sequence of neural
firings can be observed by flourescent imaging, but it is
not trivial to infer neural connectivity [3].

Establishing network structure empirically is tedious.
Ideally, to determine the presence of an edge between
a node pair, one must perturb one while measuring the
response of the other, making sure the rest is unchanged.
Proxies such as correlation coefficients can be used, but
these yield unreliable results (e.g. [4]). Furthermore,
proxies depend on specific models, e.g. the presence of
an edge could just as well imply a lack of correlation.

The problem of topological inference has been previ-
ously addressed as a convex optimization problem, and
only specific cases have been solved [1, 5, 6]. Others have
considered inferring topology when each cascade affects
only few nodes, and only when few several such cascades
take place simultaneously [7].

This work concerns with a very general class of cas-
cade models where the probability that a node activates
depends on the degree of the node and the states of the
neighboring nodes. In this class of models the activation
of every node is permanent till the cascade ends. We
present three very generally applicable methods to de-
termine network structure from time-of-activation data.
We then evaluate our success for 3 real networks, syn-
thetic random networks and for 5 different kinds of cas-
cade models. For one of the models we evaluate success
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for a full range of model parameters.
We cite an incomplete list of the systems and models

for which our methods are applicable [1, 2, 5–19]. In some
of these models, nodes activate when a critical fraction of
their providers (in-neighbors) activate [8, 19] . In others,
nodes do not deterministically activate when the number
of active providers meet a threshold; instead their proba-
bility of activation jumps to a different value [20]. In sev-
eral other models, every active node linearly adds to the
activation probability of their common neighbor. In gen-
eral, a node can respond to its neighbors arbitrarily. The
problem of inferring network structure finds applications
in many diverse areas such as biochemistry and bioinfor-
matics [12–14, 16], political science [9], social networks,
blogs [2, 5, 17], sociology [1, 8] and modelling aging [19]

II. DIFFUSION MODEL

We consider the general model where the probability
that a node activates is an arbitrary function f(m/k) of
the ratio of the number of active providers m and its
indegree k.

We denote the fraction of nodes that activate at time
t by D(t) and the fraction of nodes active at t by Q(t),

so that Q(t) =
∑t
τ=1D(τ).

For both the forward solution and the topological in-
version, the probability that m out of k providers of a
node have activated after a time t, can be approximated
as B(m, k,Q(t)) =

(
k
m

)
(Q(t))m(1−Q(t))k−m, where Q(t)

is the fraction of nodes active at t. Q(t) is to be deter-
mined recursively.

For a node with k providers, the probability D(t) of
activating is the sum over all possible number of acti-
vated providers of the product of the probability of that
number of providers being active and the value of f at
that number. Since Γ(k) is the fraction of nodes with
indegree k, for a random node with unknown indegree,

D(t) =
∑
k

Γ(k)

k∑
m=0

B(m, k,Q(t− 1))f(m/k) (1)

Since all nodes are inactive at t = 0, D(1) = f(0). For

t ≥ 2, D(t) is obtained in terms of Q(t−1) =
∑t−1
τ=1D(i)
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from equation (1) which is easily iterated. This recursive
equation was studied in detail in [20].

Interestingly, knowing the forward dynamics gives lit-
tle hint about the inverse problem of obtaining network
topology, given node activation times. This is an ill
posed problem: generally speaking, two different net-
works (even those with different Γ) can have similar mean
field behavior. Thus, the methods we develop will be
probabilistic, i.e. we will output the network structure
which is most likely according to the method used.

III. TOPOLOGICAL INVERSION

We assume that an unknown network undergoes cas-
cades numerous times and that we are given the times
when each node activates in each cascade. Throughout,
we will short-handedly denote a directional connection

from i to j, and that lack of, as
−→
ij and

6→
ij respectively.

Bayes theorem is frequently used in inverse problems
related to networks. It has been successfully applied in
several problems where network properties need to be
inferred [12–16]. Bayesian methods have also been used
to infer Bayesian networks [21].

Let N and E be the network size and edge number. In

the absence of any information, the probability that
−→
ij

for randomly chosen nodes i and j is the fractional edge
density (ratio of edges to number of possible edges).

P (
−→
ij | Ω) =

E

N(N − 1)
≡ ω

were Ω denotes absence of information.
The Bayes theorem is used to update our probabili-

ties when new information arrives. For events A and B,
it states that P (A|B) = P (A|Ω)P (B|A)/P (B). In the
present problem, when we get the data from the first ex-
periment giving us the time when i and j activate (let
E1 denote this event), the theorem gives us

P1;i→j = ωP (E1|
−→
ij )/P (E1) (2)

P (E1) = ωP (E1|
−→
ij ) + (1− ω)P (E1|

6→
ij)

We update our probabilities iteratively. As more cas-
cades happen we get more pairs of times for the activa-
tion of i and j.

Pn;i→j = Pn−1;i→jP (En|
−→
ij )/P (En) (3)

where,

P (En) = Pn−1;i→jP (En|
−→
ij ) + Pn−1;i 6→jP (En|

6→
ij),

Pn;i→j = P (
−→
ij |ti;1, tj;1, ti;2, tj;2, · · · ti;n, tj;n),

Pn;i 6→j = 1− Pn;i→j
After all experiments are completed, we will get a

probability corresponding to each ordered pair of nodes

P (
−→
ij | all data), and choose E edges with the highest

probabilities and infer that they must be true edges.
We must now find how the probability that one node

activates at t1 and the other at t2 is affected by the pres-
ence of a directed edge between the two nodes. To do so,
we offer two methods: (M1) obtaining it theoretically
and (M2) obtaining it semiempirically from a surrogate
network with similar statistical properties. We can also
infer networks heuristically without using Bayes Theorem
(M3). The latter method has the advantage that it does
not require the degree distribution of the network, but
has less overall success and requires more experiments.
We find that it is possible to use (M3) to obtain the de-
gree distribution when its success is above 80% and then
use this as an input for (M1) or (M2) which give far
superior outcomes.

We evaluate the success of our three methods in Fig. 2
in detail for a particular forward model. We evaluate our
success in Table 1 for other forward models. In all cases
more number of experiments give higher overall accuracy.
We supplement this letter with the working code that
implements these methods. Further details of our three
methods are outlined below.
(1) Theoretical Method. Here we theoretically de-

rive an approximation for P (ti, tj |
−→
ij ) and P (ti, tj |

6→
ij).

Let
−→
ij , and j have an indegree k. At a time step when

i is inactive, j has a total of k− 1 providers which could
possibly have activated. We assume all of them to be
equivalent (i.e. equally likely to have activated). The
probability that m of those providers have activated at
the given time will be a binomial distribution.

After i has activated, there are still k − 1 providers to
choose from but there is an extra node which has acti-
vated. So the probability that j is active is given by

Qj(t) =
∑
k

Γ(k)

k−1∑
m=0

B(m, k − 1, Q(t− 1))h(t) (4)

Where,

h(t) =

{
f(m/k) t ≤ ti
f((m+ 1)/k) t > ti

(5)

To find P (ti, tj |
−→
ij ), we need the probability that j

activates exactly at tj . This is equal to the difference of
the probabilities that j is not active at tj − 1 and the
probability that it is active at tj . We multiply this by
the probability that i activates at ti.

P (ti, tj |
−→
ij ) = P (tj |

−→
ij ∩ ti)P (ti)

P (ti, tj |
−→
ij ) = D(ti)

[
Qj(tj)−Qj(tj − 1)

]
Note that since the activation time of each node in each
cascade is known, D(t) and Q(t) can be obtained by sim-
ply counting the number of activations at that time.
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FIG. 1. Accuracy versus Model Parameters, for a specific model. We evaluate our success rate using the three reported
methods here, for a threshold model f(m/k) that is equal to γ for m/k < fc and ε when m/k > fc. We sweep the parameter
space and plot success rate as a function γ, ε, fc, (while keeping the other two constant at γ = 0.04, ε = 0.6 fc = 0.4). For all
runs the edges and network size are E = 1484 and N = 200. Number of experiments(cascades) is 2000 for Semiempirical and
Theoretical methods except in the bottom right plot where we plot accuracy vs. number of experiments. For Heuristic method,
the number of experiments is appropriately chosen according to the bottom right plot to give high accuracy. We evaluate other
models f(m/k) in Table 1

In a large network, the activation of two arbitrarily
chosen nodes at two different times are approximately
independent. So P (t1, t2) ≈ D(t1)D(t2) for two times t1

and t2. This observation is used to obtain P (ti, tj |
6→
ij

which is required in the Bayes’ theorem (3), as follows-

D(ti)D(tj) = ωP (ti, tj |
−→
ij ) + (1− ω)P (ti, tj |

6→
ij)

(2) Semiempirical Method This is a simple method
in which we construct another (surrogate) network with
similar statistical properties. Now we can do as many

experiments on this network to “measure” P (ti, tj |
−→
ij )

for all times. Then we use the values of this function in
(1) and (2) to get a probability for every entry in the
connectivity matrix to be a true edge. A network with
the same indegree distribution as that of the unknown
network can be easily constructed by starting with an
empty network and adding random edges to every node
one by one until the exact degree distribution is reached.

(3) Heuristic Method. When the degree distribu-
tion is not known, the edges can be considered to be pairs
of random variables. Some methods have been developed
to infer network structures by finding joint information or
correlation between these variables [10]. Here we exploit
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FIG. 2. Scalability of our methods, for a specific model. We evaluate our success rate for networks of various sizes and
densities. The threshold model with fc = 0.4, γ = 0.04 and ε = 0.6 is used for cascades. Number of experiments(cascades) is
1600 in the first plot, is equal to the number of edges in the second plot and is equal to 0.4 times the number of possible edges
(i.e. 0.4N(N − 1)) in the last plot. Edge density if fixed at 4% in the last plot.

g(m/k) Theoretical Semiempirical Heuristic
m/k 98.78 99.12 95.05

(m/k)2 95.89 99.12 95.96
1 − (1 −m/k)2 99.66 99.80 90.36
1 − exp(−m/k) 97.71 97.57 88.54
1 − exp(−3m/k) 99.80 99.73 81.67

TABLE I. Accuracy(%) of inversion for some general models
of the kind f(m/k) = 0.04+0.96g(m/k), for N=200, E=1563,
obtained from 2000 cascades on a random network.

Threshold Model g(m/k) = m/k
Expt. Theo. SE Heur. Theo. SE Heur.

20 59.34 64.84 0 48.90 63.74 0
50 78.02 80.22 0 70.33 79.67 45.05
100 84.62 84.62 73.63 78.57 87.36 68.68
200 86.81 85.16 76.92 89.01 91.76 84.62
500 88.46 88.46 85.71 90.11 91.21 86.26

TABLE II. Accuracy(%) of inference for Gagnon and Macrae
prison network: N=67, E=182, for when left: f(m/k) is a
step function (threshold model) with lower value γ = 0.04,
higher value ε = 0.6 and threshold point fc = 0.4 and right:
f(m/k) = 0.04 + 0.96m/k

.

the observation that if a node activates at some time, it
is quite likely that one or more of its providers activated
just before it. We find how often one node activates right
after another, and choose the edges between nodes with
highest number of such consecutive activations.

IV. EVALUATION

To test the accuracy of our methods we simulated var-
ious models on known synthetic and real networks and
used the activation time of nodes from the simulations
as if experimental data. We then compared our inferred
networks to the actual ones.

Advice,E=480 Discussion,E=565
Experiments Theoretical SE Theoretical SE

25 56.67 62.08 55.40 59.29
50 73.12 78.33 72.92 74.69
100 82.92 83.12 82.83 83.36
200 87.92 88.12 89.03 87.61
500 92.71 71.45 92.92 83.62

TABLE III. Accuracy(%) of inference for physician networks
(N=246): Threshold model with ε = 0.6, fc = 0.4 γ=4%

Experiments Theoretical SE Heuristic
100 64.74 79.49 63.78
200 65.38 84.61 69.23
500 69.87 85.90 73.72
1000 72.75 85.90 76.28

TABLE IV. Accuracy(%) of inference for Zachary’s Karate
club network: N=34, E=156, γ=4%, ε = 0.6, fc = 0.4

.

As a first example, we inverted a generalized version of
[8] such that f(m/k) = γ if m/k < fc and ε if m/k ≥ fc.
In other words, a node changes its activation probability
if more than a critical number of providers activate. We
varied all model parameters for this example and plotted
our accuracy in Fig.2.

In all plots and tables, we do not report accuracy as
defined by the fraction of correctly identified connectiv-
ity matrix elements, but fraction of correctly identified
edges. For example, in a network of 100 nodes and
100 edges we must decide whether ∼ 104 entries of the
connectivity matrix is a 0 or 1. If we identify 10 false
edges (and hence, also not identify 10 true edges), we
report our accuracy rate as 90/100 = 90% instead of
9980/104 = 99.8%. In addition to the threshold model
we also evaluate others models (without varying all pos-
sible parameters of these models). Our success rates are
reported in Table 1.

We tried to infer friendships between inmates of the
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Gagnon and Macrae prison using synthetic data. The
network consists of 67 prisoners(nodes) which have 182
friendships (edges) [22]. Success rates are reported in Ta-
ble 2. We have also used our methods on some undirected
graphs such as the Zachary’s Karate club network [23].
It has 34 members of a karate club (nodes) and have 156
friendships (edges) between members. The experiments
simulated resemble studying the spread of an opinions
and practices among friends. γ is included to represent
opinion formation due factors other than friends, success
rates are reported in Table 3.

Several physicians were surveyed in [24] and [25] to
study how information about a new medicine spreads
among physicians that do friendly discussions or take
professional advice. This was later modeled as a network
problem in [26], and effects of marketing were studied in
[27]. In our simulations, γ simulates the effect of market-
ing and the jump at fc assumes that a physician starts
prescribing a medicine with an increased probability ε
if their colleagues prescribe it. The results of inferring
physicians’ relationships with their colleagues using syn-
thetic data of cascades (i.e. medicine prescriptions) is
given in Table IV.

See Supplemental Material at [28] for computer pro-
grams of all of our inversion methods and instructions
for using them.

V. LIMITATIONS

We conclude our study by discussing our limitations.
Our methods do not produce accurate results when the

critical fraction is so high that most nodes activate not
due to interactions, but randomly. Since in this case, the
structure of the network plays little role in the cascade
dynamics, it becomes difficult to extract the structure.
We also observe that the theoretical method does not
work well for very dense networks (Fig. 2). This is be-
cause our (approximate) formulas depend only on the
indegree distribution Γ(k). However, in dense networks,
higher order, conditional indegree distributions (such as
the probability that a degree k node has a degree m con-
nection Γ(k,m)) plays an important role. The semiem-
pirical method works best for random networks and its
success is slightly lower for other kinds of networks. This
is because we match only the indegree distribution of the
surrogate network and the outdegree distribution may
not be well matched for other kinds of networks. This
method is essentially a binary classification of individual
edges, but we can also calculate conditional probabilities
of trees in the network using Bayes theorem. Relying
only on binary classification leads to poor accuracies at
higher link densities where higher order structures like
trees and cycles play a major role in cascade propagation.
Another limitation can be seen in Table IV, where as the
number of experiments increases, the accuracy may de-
crease. This is a common and well-known issue with
naive Bayesian classifiers [29]. Lastly, the binomial ap-
proximation in (1) works less successfully in networks for
which the providers have different likelihood of activat-
ing. Nevertheless, our success with heterogeneous net-
works (cf. Tables II-IV) show that this inaccuracy is not
very crucial.
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