
Journal of Theoretical Biology 454 (2018) 231–239 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Cheater-altruist synergy in public goods games 

Bryce Morsky 

∗, Dervis Can Vural ∗

Department of Physics, University of Notre Dame, Nieuwland Science Hall, Notre Dame 46556, USA 

a r t i c l e i n f o 

Article history: 

Received 8 January 2018 

Revised 8 June 2018 

Accepted 12 June 2018 

Available online 13 June 2018 

Keywords: 

Cooperation 

Immune-cancer dynamics 

Public goods games 

Volunteer’s dilemma 

a b s t r a c t 

Much research has focused on the deleterious effects of free-riding in public goods games, and a variety 

of mechanisms that suppress cheating behavior. Here we argue that under certain conditions cheating 

can be beneficial to the population. In a public goods game, cheaters do not pay for the cost of the pub- 

lic goods, yet they receive the benefit. Although this free-riding harms the entire population in the long 

run, the success of cheaters may aid the population when there is a common enemy that antagonizes 

both cooperators and cheaters. Here we study models of the interactions between tumor cells, which 

play a public goods game, and the immune system. We investigate three population dynamics models 

of cancer growth combined with a model of effector cell dynamics. We show that under a public good 

with a limiting benefit, the presence of cheaters aids the tumor in overcoming immune system suppres- 

sion, and explore the parameter space wherein it occurs. The mechanism of this phenomenon is that a 

polymorphism of cheaters and altruists optimizes the average growth rate of the tumor, which is what 

determines whether or not the immune response is overcome. Our results give support for a possible 

synergy between cooperators and cheaters in ecological public goods games. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The behavior of social organisms and the influence of coopera-

ion on pathology is an active field of evolutionary biology ( Griffin

t al., 2004; West et al., 2006; Wingreen and Levin, 2006 ). Altru-

sm and conflict has been explored within the domains of cancer

 Axelrod et al., 2006; Cleary et al., 2014; Merlo et al., 2006; Tom-

inson and Bodmer, 1997 ) and biofilm ( Boyle et al., 2015; Buckling

t al., 2007; Xavier and Foster, 2007 ) evolution. Evolution of so-

ial behavior is often studied within the context of the tragedy

f the commons through a multi-player Prisoner’s Dilemma game

 Rapoport and Chammah, 1965 ). Public goods benefit every agent,

ut more so the free-riders/cheaters that use them without con-

ributing. Assuming there is some cost to the production of the

ublic good by altruists, cheaters will out-compete altruists unless

urther mechanisms are in place. Since the evolutionary optimal

cooperative) behavior is not a Nash equilibrium, an outstanding

uestion in evolutionary biology is how cooperation can originate

nd stably persist. Within the literature, there is an abundance

f means to do so, such as kin-selection ( Queller, 1992 ), repeated

ames ( Axelrod and Hamilton, 1981 ), reciprocal altruism ( Ale et al.,

013 ), spatial factors ( Nowak and May, 1992 ) or selection mecha-
∗ Corresponding authors. 
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isms ( Morsky and Bauch, 2016 ). However, there has been no re-

earch exploring the hypothesis that “cheating” might have indirect

enefits to the population as a whole. 

Here we use computer simulations to put forth the hypothesis

hat under certain conditions, cheating behavior can be beneficial.

he idea is that a reservoir of altruists can fuel a rapid increase

n the population of cheaters. In an infection or tumor, strength in

umbers matter. A larger number of pathogens, even if some are

heaters that might eventually jeopardize the fitness of the popu-

ation, can flip the course of a battle. 

We explore this idea within a model of cancer cells cooperating

hrough a public good, and find that through the mechanism of

heating in a public goods game, the population as a whole can

etter overcome the immune system’s response, and thereby grow

nto a large malignant tumor instead of being kept under control. 

Cooperation under the framework of game theory is relevant to

ancer dynamics, where cancer cells may cooperate and compete

ith one another for nutrients and space. In our model, the public

ood is equally divided amongst all the population and provides a

rowth benefit to the cells. There is a metabolic cost (and there-

ore reduced growth rate) applied to the altruists, who are thus

ess fit than cheaters. Extending this fact evolutionarily, we would

xpect extinction of the altruistic phenotype. An example of such a

ublic good in cancer is vascular endothelial growth factor (VEGF)

 Sartakhti et al., 2017 ). Tumorigenesis is dependent upon a balance

f pro- and anti-angiogenic molecules ( Carmeliet and Jain, 20 0 0;
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Fig. 1. A pictorial representation of the model without a public good. Solid lines 

represent cancer-effector interactions, and dashed lines single/no variable terms. 
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Folkman, 1995 ), which are necessary for the production of blood

vessels to bring oxygen and nutrients, and remove waste. Angio-

genic factors therefore affect growth rates ( Herman et al., 2011 ).

They exhibit the tragedy of the commons in that there are altru-

istic and cheating phenotypes, the public good benefits cells irre-

spective of their contribution, and cheaters have a higher fitness

(growth rate) than altruists. 

In the host ecological setting of our social dilemma, we are

not only concerned with the issues of competition among cancer

phenotypes, but the role of the immune system and mathematical

models of immunology ( Louzoun, 2007 ). A variety of interesting

cancer-immune system models have been explored in the litera-

ture ( Eftimie et al., 2016; Fory ́s, 2002; Kirschner and Panetta, 1998;

Kuznetsov et al., 1994; Perelson and Weisbuch, 1997 ). Cancer cells

grow under the limitations of a carrying capacity and facing both

innate and adaptive anti-tumor responses by the immune system,

including the effectors: natural killer cells (NK cells), macrophages,

and T cells (CD8+ T cells). The immune systems dynamics are gov-

erned by the production and loss of these effectors. 

Here, we extend the model in Kuznetsov et al. (1994) by the

incorporation of a public goods game. We explore both linear and

Monod (nonlinear) public good growth functions, and adapt two

other canonical two-species growth models into our models that

are adaptations of the logistic equation ( Crow and Kimura, 1970 ).

Depending on the specific growth source used by the microbes,

empirical data either supports a linear or Monod growth rate func-

tion ( Monod, 1949 ). We find that the models employing the Monod

function exhibit a synergy between altruists and cheaters where

the public good is more efficiently used to increase the growth

rate of the entire population of pathogens. With this effect, the

pathogens can overcome the immune response of the host whereas

wholly altruistic or cheating populations cannot. 

Nonlinearities in benefit functions can turn what is a Prisoner’s

Dilemma in the linear case into a Volunteer’s Dilemma ( Archetti

and Scheuring, 2010; Diekmann, 1985 ), where only if the popula-

tion’s public good production is sufficient, the group as a whole

benefits. Volunteer’s Dilemmas have been shown to produce sta-

ble coexistence of cheaters and altruists (though this phenomenon

is diminished for large populations sizes as the equilibria are sus-

ceptible to small stochastic fluctuations) ( Archetti, 2009; Archetti

and Scheuring, 2010 ). The Volunteer’s Dilemma has been studied

with respect to punishment ( Raihani and Bshary, 2011 ), shared

rewards ( Chen et al., 2013 ), voluntary reward funds ( Sasaki and

Uchida, 2014 ), and asymmetric player strength ( He et al., 2014 ).

Additionally, multilevel selection can favor a polymorphism of co-

operators and defectors by maximizing the group donation level

when the benefit function is sigmoid ( Boza and Számadó, 2010 ). 

Though we have a similar nonlinearity in our Monod function,

we do not see a persistence of cheaters and altruists at any of

our equilibria. Rather than trying to show coexistence of cheaters

and altruists, or how cheating can be suppressed, we show how

cheaters are present in the socially optimal situation. The key

contribution of this paper is to demonstrate the possibility that

cheaters can contribute to the well-being of the entire population. 

Although we have chosen to illustrate our argument using can-

cer models, and interpret all our results in this language, prima

facie, the main idea seems very generalizable to other social pop-

ulations antagonized by a third party. For example, one popular

experimental model is the siderophore production in P. aerugi-

nosa ( Cordero et al., 2012; Kim et al., 2009 ). Iron is an impor-

tant and scarce resource for bacteria living in hosts. Thus, they

produce siderophores that bind to iron in hemoglobin and other

molecules to form iron-siderophore complexes. The bacteria then

absorb these complexes. Some bacteria cheat, by not producing (or

producing fewer) siderophores. They absorb the iron-siderophore

complexes produced by the community as a whole, without con-
ributing to the cost ( Boyle et al., 2013 ). The lower operating cost

llows cheating strains to reproduce faster, dominate the popula-

ion, and lead to an iron-deprived community. Thus, a mixed pop-

lation of altruists and cheaters could, in principle, overwhelm the

mmune system and perform better than one with only altruists. 

A synergy between cheating and cooperating microbes would

ave interesting epidemiological implications: Since cheaters can-

ot survive and grow on their own a new infection would have

o be initiated by altruists. After the altruistic population settles in

he new host, the pathogen may be kept under control, till a new

heating mutant emerges once again and dominates the immune

ystem. 

. Methods 

.1. Cancer growth models and the immune response 

Generally, we can write the growth of a tumor by the function

˙  = x f (x ) , where x is the number of cancer cells, and f ( x ) deter-

ines the growth of the population and density dependence. Three

ommon tumor growth models include the logistic (1a), von Berta-

anffy (1b), and Gompertz (1c) equations, 

f (x ) = 

{ 

r(1 − x/K) , (1a)
rx −1 / 3 − κx, (1b)
r − κ ln (x ) , (1c)

hich have each been used successfully within the literature

 Eftimie et al., 2011; Gerlee, 2013 ). We will focus on the logis-

ic model (1a). However, we expect cheater-altruist synergy with

ther growth models that are qualitatively similar to the phase

ortrait of Fig. 2 discussed below (i.e. that are bistable). Letting

 and K be the growth rate and carrying capacity for the cancer

ells, we then add the effects of the immune system, which kills

he cancer cells via effectors, y . 

Fig. 1 pictorially represents the model. We will examine the

ame effector dynamics, ˙ y = h (x, y ) , as Kuznetsov et al. (1994) . Ef-

ectors are produced at a basal rate, σ , and die at a rate, δ. A can-

er free host thus has an equilibrium y ∗ = σ/δ. In the presence of

 tumor, the production of immune agents is determined by the

onlinear activation function, ρyx/ (η + x ) , and immune agents are

xhausted at a rate, μx . The immune system attacks the pathogen,

nd reduces their number at a rate, xy . The dynamics of this sys-

em are governed by the following system of equations: 

˙ 
 = x f (x ) − xy, (2)

˙ 
 = y 

(
ρx − μx − δ

)
+ σ. (3)
η + x 
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Fig. 2. A phase space of the monomorphic population. The equilibrium at the top left is the malignant tumor; the one to the right is the suppressed tumor. Separating them 

is the separatrix. 
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.2. Public goods games 

Here we introduce the public goods game played amongst the

ancer cells. Let x a and x c be the number of altruists and cheaters,

espectively, and X(x a , x c ) = x a + x c the size of the tumor. The

rowth rate of cheaters is r(x a , x c ) = β + g(x a /X ) , which is the sum

f a basal growth rate, β , and the benefit from the public good,

 ( x a / X ), which is a function of the proportion of the population

hat are altruists. Altruists produce the public good at a cost of

c, and thus the growth rate of altruists is r − c. We explored two

ublic good growth functions, linear (4a) and Monod growth (4b), 

 

(
x a 

X 

)
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

αx a 

X 

, (4a)

αx a /X 

K α + x a /X 

, (4b)

here α is the maximum growth rate provided by the public good,

nd K α is the half velocity constant. Let r̄ (x a , x c ) = ((r − c) x a +
x c ) /X be the average rate of growth. In the absence of an im-

une response and other complications, it is standard to describe

he growth and competition by logistic dynamics. Here we sepa-

ately consider three population models in this class (cf. Crow and

imura, 1970 ): r / K selection (5a), weak selection (5b), and inter-

pecific competition (5c), 

f (x a , x c ) = 

{ 

r(1 − X/K) , (5a
r − X/K, (5b
r − r̄ X/K, (5c)

or cheaters, and r − c replaces r for altruists. In r / K selection (5a),

he success of one phenotype over the other is determined by both

he growth rates and carrying capacities. There is a trade-off be-

ween r and K : when close to the carrying capacity, K determines

tness, whereas when the tumor is small, r determines fitness.

n weak selection (5b), the population is limited by rK , and this

rade-off does not exist. Finally, in interspecific competition (5c),

he phenotypes compete against one another for resources. A phe-

otype with a larger growth rate will curtail the carrying capacity

f its competitor. 

The immune system does not differentiate between altruistic

nd cheating cancer cells, and thus effector dynamics are only de-
endent upon the size of the tumor, i.e. ˙ y = h (X, y ) . In general, the

odel is written 

˙ 
 a = x a f 

(
x a , x c , (r ◦ g) 

(
x a 

X 

)
− c 

)
− x a y, (6) 

˙ 
 c = x c f 

(
x a , x c , (r ◦ g) 

(
x a 

X 

))
− x c y, (7) 

˙ 
 = y 

(
ρX 

η + X 

− μX − δ
)

+ σ. (8) 

A summary of the parameters, variables, and their values

an be found in Table 1 , which were estimated from experi-

ental data and converted into non-dimensional parameters in

uznetsov et al. (1994) . We have chosen the values of α, K α , and

 in Table 1 to show the synergy between cheaters and altruists in

n emphasized way, since this is the main point of our paper. The

ynergy does not exist across the entire parameter space. 

. Results 

Here we discuss the qualitative dynamics of the immune sys-

em plus social and anti-social cancer cells, i.e. the equilibria, sta-

ility, and invariant surfaces. We follow these analyses with sim-

lation results that depict the synergy (and lack thereof) between

ltruists and cheaters, and the effects of different parameters on

his synergy. 

The non-zero equilibria occur for ˙ x a = 0 and ˙ x c = 0 when 

 

∗ = f 

(
x ∗a , x 

∗
c , (r ◦ g) 

(
x ∗a 
X 

∗

)
− c 

)
= f a , (9) 

 

∗ = f 

(
x ∗a , x 

∗
c , (r ◦ g) 

(
x ∗a 
X 

∗

))
= f c , (10) 

espectively. For c � = 0, we cannot have polymorphic equilibria.

valuating the Jacobian, J , for a monomorphic population x ∗
i 

> 0

nd x ∗
j 
= 0 , we find 

et (J − λI) = ( f j − f i −λ) 

[(
x ∗i 

∂ f i 
∂x i 

− λ

)(
∂h 

∂y 
−λ

)
+ x ∗i 

∂h 

∂X 

]
. (11)
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Table 1 

Summary definitions of parameters and variables. 

Parameter/ variable Value Definition 

α 1.3088 Benefit from the public good 

β 1.636 Basal growth rate 

δ 0.3743 Death rate of effectors 

η 20.19 Activation parameter 

K 500 Carrying capacity 

K α 0.5 Monod parameter 

μ 0.00311 Inactivation rate 

ρ 1.131 Activation parameter 

σ 0.1181 Birth rate of effectors 

c 0.818 Cost to altruists 

r − c — Altruist growth rate 

r — Cheater growth rate 

r̄ — Average growth rate 

x a — 10 6 altruists 

x c — 10 6 cheaters 

X — Tumor size (10 6 ) 

y — 10 6 effectors 

s

X
 

I  

t  

c  

t  

r  

f

r  

w  

p

 

T  

w  

g  

r

 

r

(  

t  

u  

X  

t  

i  

σ  

m  

(  

W  

c  

t  

b

 

d  

c  

i  

i  

c  

F  
Assuming that c > 0 and f is an increasing function with respect

to the growth rate, f c > f a ⇒ λ1 > 0. Thus, the equilibrium x ∗a > 0 is

unstable; defectors always out-compete cooperators. 

Since g (0/0) is undefined and altruist equilibria are unstable

with respect to cheaters, we will examine the stability for the non-

altruist system (where r = β) of the non-cancerous state, (x c , y ) =
(0 , y ∗) . Evaluating the Jacobian at the critical point (0, y ∗), we find

det (J − λI) = ( f c − y ∗ − λ) 

(
∂h 

∂y 
− λ

)
. (12)

For our choice of h , ∂ h/∂ y | x ∗c =0 = −δ < 0 �⇒ λ3 < 0 . However,

since 

f c (0) − y ∗ = β − σ/δ > 0 �⇒ λ1 > 0 and thus the non-

cancerous state is unstable. 

Returning to our choices of f and h , we find the non-zero

monomorphic tumor equilibria by solving ˙ y = 0 . 

˙ y = f i [ −μx ∗2 
i + (ρ − μη − δ) x ∗i − δη] + σ (x ∗i + η) = 0 

�⇒ 

r i μ

K 

x 3 ∗i − r i 

(
μ + 

ρ − μη − δ

K 

)
x ∗2 

i 

+ 

(
r i δη

K 

+ r i (ρ − μη − δ) + σ

)
x ∗i 

+ η(σ − r i δ) = 0 , (13)

μ

K 

x 3 ∗i −
(

r i μ + 

ρ − μη − δ

K 

)
x ∗2 

i + 

(
δη

K 

+ r i (ρ − μη − δ) + σ

)
x ∗i

+ η(σ − r i δ) = 0 . (14)

Where r a = β + g(1) − c and r c = β, (10) and (11) are the cubic

functions to find the monomorphic states for the r / K and interspe-

cific competition models, and the weak selection model, respec-

tively (note that since r̄ = r in monomorphic populations, (10) ap-

plies for both r / K selection and interspecific competition). Using

the parameters from Table 1 and Eq. (8) to test for stability, we

show the following equilibria in Table 2 . 

Qualitatively, the model has four fixed points ( Table 2 ): the

tumor free state, a suppressed tumor (i.e. corresponds to a dor-

mant/benign state); a large tumor (i.e. a malignant tumor or death

of the host); and a saddle point. Fig. 2 depicts the phase space for a

monomorphic population of cheaters. The tumor free state is con-

nected to the saddle via a stable manifold. This stable manifold, a

separatrix, divides phase space into regions where the tumor suc-

ceeds and fails. The unstable manifold spirals into the suppressed

state on one side of the separatrix, and connects to the malignant

state on the other side. Qualitatively, this picture is the same as in

Kuznetsov et al. (1994) with the addition of the altruist dimension.

Fig. 3 shows the regions of suppression (gray) and success

(white) of the tumor for all the models we study. The goal here

is to check whether a certain initial distribution of phenotypes ( x c ,

x a ) succeeds in defeating the host. The line x a = X − x c (with con-

stant X ) is overlaid to these plots to show whether changing the

composition of the population—without changing the size of the

tumor—results in a difference in the fate of the disease. 

Interestingly, in some cases we observe that population com-

positions with an intermediate number of cheaters can place the

population in the successful region, while too few or too many

cheaters jeopardize the population. In other words, while neither

pure altruism nor pure cheating leads to success, a mixture of the

two does. We observe this phenomenon in a tumor growing from

the public good according to the Monod law, but not for linear

growth. 

We can explain this phenomenon by examining the equations

for the change in the total population, ˙ X , r / K selection and inter-
pecific competition (15a), and weak selection (15b); 

˙ 
 = 

⎧ ⎨ 

⎩ 

r̄ X 

(
1 − X 

K 

)
− yX, (15a)

r̄ X − X 

2 

K 

− yX. (15b) 

n linear growth, r̄ = β + (α − c) x a /X, which is an increasing func-

ion with respect to x a (given α > c ). Thus, (15a) and (15b) are in-

reasing with respect to x a . Therefore, the impact of decreasing al-

ruists in favor of cheaters is a decrease in the total population’s

ate of growth; cheaters harm the population as a whole. However,

or Monod growth, we have the function 

¯
 = β + 

(
α

K α + x a /X 

− c 

)
x a 

X 

(16)

ith the assumption that α/ (K α + 1) > c. With respect to the pro-

ortion of altruists, this function has a local maximum at 

x a 

X 

= 

√ 

αK α

c 
− K α > 

√ 

K α(K α + 1) − K α > 0 . (17)

herefore, unlike the linear growth case, the optimal growth rate

ill occur in the presence of cheaters when 

√ 

αK α/c − K α < 1 . In

eneral, cheaters are beneficial to the tumor if f is increasing with

espect to g and g is decreasing at x a /X = 1 . 

Fig. 4 shows the results for simulations where we varied the pa-

ameters, α (the maximum growth rate from the public good), K α

the half velocity constant), and c (the cost of public good produc-

ion). We ran simulations for pure altruist and 5% cheaters pop-

lations. We calculated the minimum initial total population size

 and X 

′ at which the pure and 5% cheater populations, respec-

ively, became malignant (the stable malignant cheater equilibria

n Table 2 ). The initial number of effectors for these simulations is

/ δ, the non-cancerous state. Thus, our simulations describe a tu-

or that has evaded an immune response before reaching size X

 X 

′ ) (for a review on how this can happen cf. Marcus et al., 2014 ).

e colored the figures relative to X ′ − X; blue regions are where

heaters are beneficial and red where they are not. The purpose of

his figure is to determine the parameter space where cheaters are

eneficial. 

We observe that for sufficiently large α and small c , cheaters

o not benefit — and may in fact hinder — the tumor. For suffi-

iently high α, the difference between the two initial cases is min-

mal. Since, even a marginal initial population will overcome the

mmune response. However, within the region where we observe

heater-altruist synergy, increasing α reduces the synergistic effect.

ig. 5 explains this effect. Note the sharp drop in the separatrix in
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Fig. 3. A mixed population of altruists and cheaters minimizes the tumor size required to overcome the immune system when growth from the public good behaves as a 

Monod function (d–f). However, this behavior is not observed when the growth function is linear (a–c). The white and gray regions are where the tumor overcomes and is 

suppressed by the immune system, respectively. The black curves are the isoclines, x a = X − x c , where X = 10 in b and e , and X = 40 , otherwise. 

Table 2 

Summary of fixed points, (x ∗a , x 
∗
c , y 

∗) , and their stability. 

F  

H  

c  

n  

i

 

h  

p  

c  

t  

e  

i  

a  

c  

h  

g  

l  

d

 

m  

n  

F  

m  

t  

r  

d  

l  

w  

x  

t  

f  

g  
ig. 5 ; a small proportion of cheaters is beneficial to the tumor.

owever, the remainder of the curve shows malign effects of in-

reasing the proportion of cheaters. As we increase α, this phe-

omenon disappears, and we observe the same qualitative behav-

or as linear growth. 

K α is negatively correlated with cheater success ( Fig. 4 ). A low

alf velocity constant implies that the marginal benefit from the

ublic good rapidly decreases as the proportion of altruists in-

reases. As such, cheaters permit a more efficient utilization of

he public good in the population. In the linear growth case, this

ffect cannot occur because the higher the proportion of altru-

sts, the greater the tumor’s growth rate. However, where cheaters

re harmful, as seen in panels (a), (d), and (g), K α is negatively

orrelated with the deleterious effects of cheaters. Cheaters are

armful to the population when α is sufficiently high. As K α → 0,

(x a /X ) = α, which is independent of the proportion of the popu-
ation that are altruists. Thus, similarly with the other panels, the

ifference between the outcomes is marginal. 

We compared the separatrices for the Monod models of a tu-

or with the two phenotypes and a tumor with a single phe-

otype with an intermediate production of the public good in

ig. 6 . We plotted the tumor size required to overcome the im-

une system given an initial proportion of altruists x a / X for the

wo (pheno)types case, and a single phenotype with growth rate

¯ (x a /X ) ( Eq. (12) ) where x a / X is interpreted as a parameter. We

enote the latter phenotype the “mixed type.” When altruism is

ow, the two types population is optimal for the tumor. Conversely,

hen altruism is high, the mixed type population is optimal. If

 a /X < 

√ 

αK α/c − K α, then the mixed type will out-compete the

wo type case. Since, x a / X → 0 as t → ∞ and (6) is a decreasing

unction from 0 to 
√ 

αK α/c − K α in the two type case, while the

rowth rate of the mixed type will not decrease. This figure shows



236 B. Morsky, D.C. Vural / Journal of Theoretical Biology 454 (2018) 231–239 

Fig. 4. Comparison of success of a 5% cheater population vs. a pure altruist population for varying parameters α, K α , and c . The colored regions measure the difference 

between the initial population size required to overcome immune suppression for the 5% cheater, X , vs. pure altruist populations, X ′ . The curves define the envelope in 

which the optimal growth rate occurs for x a < 1 and the pure altruist Monod growth rate is greater than c . Where a parameter is not varied, its value is from Table 1 . 
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that the presence of distinct phenotypes, altruists and cheaters, can

be important for the tumor to overcome the immune system (i.e.

when altruism is low). However, the minimum for each panel oc-

curs for the mixed type models at an intermediate degree of altru-

ism as we expect from g being nonlinear. 

4. Discussion 

Previous studies support the hypothesis of frequency dependent

selection among cheaters and altruists in microorganisms ( Diggle

et al., 2007; Levin et al., 1988; Ross-Gillespie et al., 2007 ). Al-

truists are less fit in the presence of cheaters, who outperform

them. Further, average fitness is negatively correlated with the

proportion of cheaters, which reduces virulence ( Harrison et al.,

20 06; Rumbaugh et al., 20 09 ). Our linear growth model qualita-

tively matches these empirical results. Given these observations,
he question arises as to how altruism can be facilitated. However,

ess discussed, is why both cheating and altruism are prevalent,

hich is relevant since the prevalence of cheaters may be common

 Dugatkin et al., 2005; Velicer et al., 20 0 0 ). 

Much research has explored the use of ecology and evolution

gainst cancer ( Korolev et al., 2014 ), and the mechanisms by which

ltruism can be facilitated, yet not how cheating can indirectly aid

he population. Our approach was to explore how, in host-tumor

cology, if cheaters may be necessary for tumors to overcome

he host’s immune system. Our problem can be interpreted as a

hreshold Volunteer’s Dilemma in two ways: the benefit to growth

s nonlinear in the Monod case, and there is a threshold of altru-

sm at which the population overcomes the immune response (the

efinition of benefit in this case). However, unlike in other models

f Volunteer’s Dilemmas ( Archetti and Scheuring, 2010 ) — which

an be understood as N person games of Chicken (Hawk-Dove)

 Palfrey and Rosenthal, 1984 ) — we do not observe coexistence
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Fig. 5. Comparison of varying benefits from public good growth rates ( α) on the separatrix with respect to initial conditions ( x c , x a ). For a given separatrix, below the curve 

the tumor is contained and above it it is not. All separatrices are in decreasing order from top to bottom of the graphs with increasing α ( α = 1 . 5 , 1.75, 2, and 2.25). As α

increases, the behavior of the model approaches that of linear growth, i.e. a monomorphic altruistic population is optimal with respect to the tumor. All other parameter 

values used are from Table 1 . 

Fig. 6. Comparison of the separatrices of a polymorphic population of two types, altruists and cheaters, at initial condition x a / X (solid curves), vs. a “mixed type” monomor- 

phic population with growth rate r̄ (x a /X ) ( Eq. 12 , dashed curves). Below the curves, the immune system suppresses the tumor, and above them, it does not. For low altruism, 

the two types case outperforms the mixed type. And, for high altruism, the mixed type is optimal. All other parameter values used are from Table 1 . 
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f altruists and cheaters. In the long run, cheaters will always out-

ompete altruists. 

We have shown that although cheaters out-compete altruists in

 mixed population, such a population can be more harmful than

 pure population of altruists or cheaters. This unexpected phe-

omenon occurs due to the Monod growth nature of the public

ood. The optimal total population growth rate may be at a mixed

opulation. Although this harms altruists relative to cheaters, it

ay permit the tumor to resist suppression by the immune sys-

em. 

We can interpret our model as having two public goods. The

rst is the altruists’ secretion, which increases the growth of in-

ividual cells. The second public good is simply provided by the

resence of tumor cells, regardless of whether they are cheaters or

ltruists. This is because, the greater the number of cells, the better

he tumor can combat the immune system. Thus, though cheaters

ree-ride with respect to the first public good, they help provide

are cooperative) with respect to the second. As such, the presence

f an antagonizing outside force and a collective outcome (sup-

ression or malignancy) can make the cheaters quasi-cooperative. 

There are several interesting extensions that this paper does

ot address: spatial effects ( Lieberman et al., 2005 ), stochasticity,

r other effector dynamical equations. Spatial effects, for example,

ould show surprising results. Spatial considerations in the diffu-

ion of public goods can aid cooperation in tumors ( Archetti, 2016 ).

owever, though this effect could explain persistence of some de-

ree of altruism, it also could counteract the benefit from cheaters
n the Monod case. Spatial effects could also address a weakness

f the model, an explanation for the prevalence of altruism at the

nitial stages of the tumor. Another extension that may address

his concern is interactions groups, which have been shown to fa-

ilitate cooperation where population density depends on average

ayoff ( Hauert et al., 2006, 2008 ) (details of an interaction group

xtension to the model are presented in Appendix B ). Addition-

lly, interaction groups could result in interesting cycles of altru-

sm and cheating facilitating the spread of tumors. Such cycling

ould also be observed by assuming different carrying capacities.

 mixed population is required to overcome the immune response,

uring which the relative number of cheaters is increasing. How-

ver, if the carrying capacity for altruists were to be larger than for

heaters, then at large population sizes, the relative fitness advan-

age of cheaters may vanish. In this interplay, cheaters are r selec-

ion and altruists K selection phenotypes. 

uthor contributions 

B.M. and D.C.V. conceived the theory and carried out the analyt-

cal work. B.M. ran the numerical simulations. Both authors wrote

nd reviewed the manuscript. 

ompeting interests 

The authors declare no competing financial interests. 



238 B. Morsky, D.C. Vural / Journal of Theoretical Biology 454 (2018) 231–239 

 

 

 

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

A  

A  

B  

B  

 

 

 

B  

 

C  

C  

 

 

 

 

C  

D

D  

D  

 

E  

 

E  

 

F  

F  

G  

G  

 

H  

 

H  

H  

 

K  

 

 

K  

K  

K  

 

L  

 

L  

L  

M  

 

 

M  

 

Acknowledgment 

This material is based upon work supported by the Defense Ad-

vanced Research Projects Agency under Contract no. HR0011-16-C-

0062 . 

Appendix A. Correspondence between parameters and 

variables, and units 

From Kuznetsov et al. (1994) : 

β = 

0 . 18 × 10 

7 cells × day 

1 . 101 × 10 

6 cells × day 
, ρ = 

0 . 1245 × 10 

7 cells × day 

1 . 101 × 10 

6 cells × day 
, 

δ = 

0 . 0412 × 10 

7 cells × day 

1 . 101 × 10 

6 cells × day 
, σ = 

1 . 3 × 10 

11 × cells × day 

1 . 101 × 10 

12 × cells × day

η = 

2 . 019 × 10 

7 cells 

10 

6 cells 
, x i = 

cells 

10 

6 cells 
, 

K = 

10 

9 cells 

2 . 0 × 10 

6 cells 
, y = 

cells 

10 

6 cells 
. 

μ = 

3 . 422 × 10 

7 cells × day 

1 . 101 × 10 

10 cells × day 
, 

Appendix B. Interaction groups 

The results in the main body of the paper assume mean-field

dynamics. However, spatial considerations in the diffusion of pub-

lic goods can aid cooperation in tumors ( Archetti, 2016 ), and inter-

action groups in ecological public goods games have been shown

to facilitate cooperation where population density depends on av-

erage payoff ( Hauert et al., 20 06, 20 08 ). We extend our model

above by introducing interaction groups. Assume that players form

interaction groups of size N , at random, where they play the public

goods game. The probability of a player finding itself in an inter-

action group where k of the other N − 1 players are cooperators is

P (x a = k ) = 

(
N − 1 

k 

)(
x a 

X 

)k (
1 − x a 

X 

)N−1 −k 

. (18)

Then, on average, for the cheaters and altruists growth rates, r c 
and r a , we have 

r c = β + 

αx a (N − 1) 

NX 

, (19)

r a = β + 

αx a (N − 1) 

NX 

− c + 

α

N 

. (20)

Note now that the growth rate for cheaters is not necessar-

ily greater than that of altruists. If the tumor size and interaction

group are sufficiently small, altruists are more fit than cheaters.

The implication is that altruists can be evolutionarily stable in the

benign tumor state while not in the malignant state. The evolu-

tionary story under stochastic conditions that this provides is that

any new small tumors will be altruists capable of fueling rapid

growth synergistically with cheaters. If a malignant tumor is capa-

ble of spreading with via a small offshoot, altruists could reemerge.

We thus have a cycle of small tumors and altruism, and malig-

nancy and cheating. 
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