
ON PARABOLIC CLOSURES
IN COXETER GROUPS

MATTHEW DYER

Abstract. For a finitely generated subgroup W ′ of a Coxeter system (W, S),

there are finitely generated reflection subgroups W1, . . . , Wn of W , each con-
taining W ′, such that any reflection subgroup of W containing W ′ contains one

of the Wi as a standard parabolic subgroup. The canonical Coxeter generators

of the Wi, and an expression for the parabolic closure of W ′ as a W -conjugate
of a standard parabolic subgroup of W , may be effectively determined.

1. Introduction and statement of results

This note describes results on the structure of reflection subgroups of a Coxeter
system (W,S) which together afford an algorithm for computing the parabolic clo-
sure of (i.e. the parabolic subgroup of minimal rank containing) a given finitely
generated subgroup of W .

Recall that the standard parabolic subgroups of W are the subgroups WJ = 〈J〉
generated by subsets J of S, and the parabolic subgroups of W are the W -conjugates
of the standard parabolic subgroups; these notions depend on S. Any reflection
subgroup W ′ of W has a canonical set of Coxeter generators (depending on S) which
we denote as χ(W ′). Notions of parabolic and standard parabolic subgroups, rank
etc of W ′ are defined in terms of the Coxeter generators χ(W ′) of W ′.

In Section 2, we provide more background on the above notions, and prove the
following results.

Proposition 1. Let W ′ be a finitely generated subgroup of W . Then there exist
n ∈ N≥1 and finitely generated reflection subgroups W1, . . . ,Wn of W such that
each Wi contains W ′ and if W ′′ is a reflection subgroup of W with W ′′ ⊇ W ′, then
W ′′ contains Wi as a standard parabolic subgroup for some i with 1 ≤ i ≤ n.

Proposition 2. Let W ′′ be a finitely generated reflection subgroup of W with
χ(W ′′) = {c1, . . . , cn} where n = |χ(W ′′)|. Choose a finite subset J of S such
that W ′′ ⊆ WJ . Then W ′′ is a parabolic subgroup of W iff there exist pairwise dis-
tinct s1, . . . , sn ∈ J and some w ∈ WJ with w(c1 · · · cn)w−1 = s1 · · · sn, in which
case W ′′ = w−1W{s1,...,sn}w.

Corollary 3. The parabolic closure of the finitely generated subgroup W ′ of W
is the (unique) subgroup Wi in Proposition 1 which is of minimal rank among the
subgroups Wj, for j = 1, . . . , n, which are parabolic in W .

The proof of Proposition 1 shows that the sets of canonical Coxeter generators
χ(Wi) can be effectively determined from a finite set of generators of W ′. Propo-
sition 2 provides an effective test for determining whether a finitely-generated re-
flection subgroup of W is parabolic, since it involves only finitely many tests for
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conjugacy of elements of the finitely-generated Coxeter group WJ , and the conju-
gacy problem for (finitely generated) Coxeter groups is solvable in general (see [5],
[1]; in fact, it is known [10] that for any finitely generated Coxeter system (W,S),
there is a computable constant N ∈ N such that if x, y ∈ W are W -conjugate,
there is an element w ∈ W of length l(w) ≤ N(l(x) + l(y)) with y = wxw−1). An
explicit expression of the parabolic closure of W ′ as a W -conjugate of a standard
parabolic subgroup of W may therefore be effectively determined from a finite set
of generators of W ′ using Corollary 3 and Proposition 2.

We remark that a quite different algorithm for computing the parabolic closure
of a cyclic subgroup of W was given in [10], where it was used as a preliminary
step in various polynomial time algorithms for solving the conjugacy problem. De-
spite Proposition 2, an effective test for conjugacy of finitely-generated reflection
subgroups of W in general is not known to the author.

2. Background and proof of results

As general references for facts on Coxeter groups and their reflection represen-
tations, root systems, Bruhat order etc used here, see [2] and [9]

2.1. Let (W,S) be a Coxeter system, l : W → N denote its standard length func-
tion, and T = {wsw−1 | w ∈ W, s ∈ S } denote its set of reflections. For w ∈ W , let
N(w) := { t ∈ T | l(tw) < l(w) }. Let ≤ denote Bruhat order on W , and e = 1W .

A subgroup W ′ of W is called a reflection subgroup if it is generated by W ′ ∩T .
Let W ′ be a reflection subgroup of W . Then by [7] or [6], W ′ has a canonical set of
Coxeter generators S′ = χ(W ) := { t ∈ T | N(t)∩W ′ = {t} }. We say a subgroup of
W ′ is a standard parabolic subgroup of W ′ if it is generated by a subset of χ(W ′).
A subgroup of W ′ is called a parabolic subgroup of W ′ if it is conjugate in W ′ to
a standard parabolic subgroup of W ′. An algorithm for computing χ(W ′) from a
finite set of reflections generating W ′ is described in [7] and in more detail in [6].
The cardinality of χ(W ′) will be called the rank of W ′.

2.2. Here, we recall some general facts from [8]. Let Ω(W,S) be the directed graph
with vertex set W and with set of directed edges { (tw,w) | w ∈ W, t ∈ N(w) },
where we view (tw,w) with t ∈ N(w) as an edge directed from tw to w. For
A ⊆ W , let Ω(W,S)(A) denote the full subgraph of Ω(W,S) with vertex set A. Another
characterization of S′ = χ(W ′) amongst sets of Coxeter generators of W ′ is that for
any x ∈ W , there is an element y ∈ xW ′ such that the map Ω(W,S)(xW ′) → Ω(W ′,S′)

given by w 7→ y−1w an isomorphism of directed graphs. The element y is the unique
element of xW ′ with N(y−1)∩W ′ = ∅, the unique element of minimal length l(y) in
the coset xW ′, the unique source of the graph Ω(W,S)(xW ′) and the unique element
y ∈ xW ′ such that there is no edge (yr, y) in Ω(W,S) with r ∈ χ(W ′). It is easy
to see from the last description of y that if W ′ is finitely generated (i.e. χ(W ′) is
finite) then y is effectively computable from x and χ(W ′).

For use in the proof of Proposition 2, we record the following:

Lemma 1. Let W ′′ be a reflection subgroup of W and w ∈ W . Fix u ∈ wW ′′ with
N(u−1) ∩W ′′ = ∅. Then χ(wW ′′w−1) = uχ(W ′′)u−1.

Proof. Let S′′ := χ(W ′′). Now wW ′′w−1 = uW ′′u−1 clearly has uS′′u−1 as a set of
generators. Since the set χ(uW ′′u−1) of Coxeter generators of uW ′′u−1 is a minimal
set of generators of uW ′′u−1, it will suffice to show that uS′′u−1 ⊆ χ(uW ′′u−1).
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Let s ∈ S′′ i.e. s ∈ T with N(s) ∩ W ′′ = {s}. To prove usu−1 ∈ χ(uW ′′u−1), we
must show N(usu−1) ∩ uW ′′u−1 = {usu−1} or u−1N(usu−1)u ∩ W ′′ = {s}. To
show this, regard N as a cocycle of W with values in the power set of T , regarded
as additive abelian group under symmetric difference and with left W -action by
conjugation, as in [7].

The cocycle condition gives N(usu−1) = N(u) + uN(s)u−1 + usN(u−1)su−1.
Hence u−1N(usu−1)u = N(u−1) + N(s) + sN(u−1)s. Since W ′′ = sW ′′s, we get

u−1N(usu−1)u ∩W ′′ = (N(u−1) ∩W ′′) + (N(s) ∩W ′′) + s(N(u−1) ∩W ′′)s

= ∅+ {s}+ ∅ = {s}
as required. �

2.3. Proof of Proposition 1. Suppose W ′ is generated by x1, . . . , xm. Let W ′′

be a reflection subgroup of W , and S′′ = χ(W ′′). We have xi ∈ W ′′ iff xi has
some reduced expression xi = rn · · · r1 in (W ′′, S′′) iff there is a directed path
e = w0, w1, . . . , wn = xi in Ω(W ′′,S′′) with wjw

−1
j−1 = rj ∈ S′′ for j = 1, . . . , n iff

there is a directed path e = w0, w1, . . . , wn = xi in Ω(W,S) with wjw
−1
j−1 = rj ∈ S′′

for j = 1, . . . , n. Note that there are only finitely many directed paths from e to
xi in Ω(W,S), since all vertices y of such a path are in the (finite) Bruhat interval
[e, xi] and the standard length function of (W,S) strictly increases along the path.

Consider the subsets R of T such that R = χ(〈R〉) and for each i = 1, . . . ,m,
there is some directed path e = w0, w1, . . . , wn = xi (with n and the wj depending
on i) in Ω(W,S) with wjw

−1
j−1 ∈ R for j = 1, . . . , n. From above, such sets R

are precisely the sets of canonical Coxeter generators of the reflection subgroups
of (W,S) which contain W ′. The above remarks also imply that the set of such
subsets R, when ordered by inclusion, has only finitely many minimal elements, say
R1, . . . , Rn, and that the reflection subgroups W1, . . . ,Wn defined by Wi = 〈Ri〉
for i = 1, . . . , n have the required properties. In fact, any minimal set R as above
is a subset of the finite set T ∩ {xy−1 | x ≤ y ≤ xi for some i = 1, . . . , n }, so the
Ri are effectively computable.

2.4. Recall that a parabolic subgroup of a parabolic subgroup of W is itself a
parabolic subgroup of W . Further, the intersection of two parabolic subgroups of
W is a parabolic subgroup of both of them, and hence also a parabolic subgroup of
W , by a well-known result of Kilmoyer (see [4, Theorem 2.7.4]; the proof there for
the case of finite W readily extends to arbitrary W ). It follows that the intersection
W ′′ of all parabolic subgroups containing a given finitely generated subgroup W ′ of
W is the unique parabolic subgroup W ′′ of W of minimal (finite) rank containing
W ′. One calls W ′′ the parabolic closure of W ′. Note that W ′′ is a parabolic
subgroup of any (finite rank) standard parabolic subgroup of W which contains
W ′.

2.5. Proof of Proposition 2. Suppose first that W ′′ is a parabolic subgroup of
W . The remarks of the preceding subsection show that W ′′ is a parabolic subgroup
of WJ , so wW ′′w−1 = WK for some K ⊆ J and w ∈ WJ . Write w = yz where
z ∈ W ′′ and N(y−1) ∩ W ′′ = ∅. Then WK = yW ′y−1 so by Lemma 1, K =
χ(WK) = yχ(W ′)y−1 = { yc1y

−1, . . . , ycny−1 }. Letting yciy
−1 = si ∈ K, we have

y(c1 · · · cn)y−1 = s1 · · · sn as required.
Conversely, suppose s1, . . . , sn in J are pairwise distinct and w(c1 · · · cn)w−1 =

s1 · · · sn = c. We may assume without loss of generality that W is realized in its
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standard reflection representation (see e.g. [9, Ch 5]) on a real vector space V
with standard symmetric bilinear form, with associated root system Φ and linearly
independent simple roots Π. For α ∈ Φ, we let sα ∈ W denote the orthogonal
reflection in α. By enlarging V and extending the form if necessary, we may assume
that the form (?|?) on V is non-degenerate.

Let si = sαi
and ci = sβi

where αi ∈ Π and βi ∈ Φ. Using non-degeneracy of
the form, it is easy to see that Im(e − c) = V ′ :=

∑n
i=1 Rαi is n-dimensional. On

the other hand, if γi, . . . , γm ∈ Φ with c = sγ1 · · · sγm , then Im(e − sγ1 · · · sγm) ⊆∑n
i=1 Rγi is at most m-dimensional. Hence if c = sγ1 · · · sγm

with m ≤ n we get that
m = n and γ1, . . . , γn is a R-basis of V ′. It is well known (see e.g. [3, Proposition
3.3]) that γi ∈ V ′ implies sγi

∈ WK for i = 1, . . . , n, where K = {s1, . . . , sn}.
Applying the preceding paragraph with γi = w(βi) shows that γi ∈ V ′ and sγi =

wciw
−1 ∈ WK for i = 1, . . . , n. Write w = yz where z ∈ W ′′ and N(y−1)∩W ′′ = ∅.

Since W ′′ = 〈 zciz
−1 | i = 1, . . . , n 〉, it follows that yW ′′y−1 ⊆ WK . Choose a

reduced expression p = r1 · · · rk for p := zc1 · · · cnz−1 in (W ′′, χ(W ′′)). Then there
is a directed path e, rk, rk−1rk, . . . , r1 · · · rk−1rk = p in Ω(W ′′,χ(W ′′)). By Lemma 1,
conjugating by y gives a directed path

e, yrky−1, yrk−1rky−1, . . . , yr1 · · · rk−1rky−1 = ypy−1 = s1 · · · sn

in Ω(yW ′′y−1,χ(yW ′′y−1)). The last path is also a directed path in Ω(W,S). Now since
the si are pairwise distinct, any path e = q0, q1, . . . , ql = s1 · · · sn in Ω(W,S) has
l = n and satisfies 〈 qiq

−1
i−1 | i = 1, . . . , n 〉 = 〈 s1, . . . , sn 〉 (for example, by induction

on n). Hence k = n and 〈 yriy
−1 | i = 1, . . . , n 〉 = WK . Thus, yW ′′y−1 ⊇ WK .

Since the reverse inclusion has previously been established and z ∈ W ′′, we get
wW ′′w−1 = yW ′′y−1 = WK , completing the proof.

2.6. Proof of Corollary 3. Corollary 3 follows immediately from the remarks in
2.4 since they imply that the parabolic closure of W ′ must be one of the subgroups
Wi in Proposition 1.
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