ON PARABOLIC CLOSURES
IN COXETER GROUPS

MATTHEW DYER

ABSTRACT. For a finitely generated subgroup W’ of a Coxeter system (W, S),
there are finitely generated reflection subgroups Wi, ..., W, of W, each con-
taining W/, such that any reflection subgroup of W containing W’ contains one
of the W; as a standard parabolic subgroup. The canonical Coxeter generators
of the W;, and an expression for the parabolic closure of W’ as a W-conjugate
of a standard parabolic subgroup of W, may be effectively determined.

1. INTRODUCTION AND STATEMENT OF RESULTS

This note describes results on the structure of reflection subgroups of a Coxeter
system (W, S) which together afford an algorithm for computing the parabolic clo-
sure of (i.e. the parabolic subgroup of minimal rank containing) a given finitely
generated subgroup of W.

Recall that the standard parabolic subgroups of W are the subgroups W; = (J)
generated by subsets J of S, and the parabolic subgroups of W are the W-conjugates
of the standard parabolic subgroups; these notions depend on S. Any reflection
subgroup W’ of W has a canonical set of Coxeter generators (depending on .S) which
we denote as x(WW'). Notions of parabolic and standard parabolic subgroups, rank
etc of W’ are defined in terms of the Coxeter generators x(W’) of W’.

In Section 2, we provide more background on the above notions, and prove the
following results.

Proposition 1. Let W' be a finitely generated subgroup of W. Then there exist
n € N>y and finitely generated reflection subgroups Wi,..., W, of W such that
each W; contains W' and if W" is a reflection subgroup of W with W" 2> W', then
W' contains W; as a standard parabolic subgroup for some i with 1 <i < n.

Proposition 2. Let W be a finitely generated reflection subgroup of W with
x(W") = {c1,...,cn} where n = |x(W")|. Choose a finite subset J of S such
that W' C Wjy. Then W is a parabolic subgroup of Wiff there exist pairwise dis-
tinct s1,...,8, € J and some w € Wy with w(cy - cp)w™ = 81+ 8y, in which

case W' = w‘lW{shwsn}w.

Corollary 3. The parabolic closure of the finitely generated subgroup W' of W
is the (unique) subgroup W; in Proposition 1 which is of minimal rank among the
subgroups Wy, for j =1,...,n, which are parabolic in W.

The proof of Proposition 1 shows that the sets of canonical Coxeter generators
x(W;) can be effectively determined from a finite set of generators of W’. Propo-
sition 2 provides an effective test for determining whether a finitely-generated re-
flection subgroup of W is parabolic, since it involves only finitely many tests for
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conjugacy of elements of the finitely-generated Coxeter group W, and the conju-
gacy problem for (finitely generated) Coxeter groups is solvable in general (see [5],
[1]; in fact, it is known [10] that for any finitely generated Coxeter system (W, .S),
there is a computable constant N € N such that if x,y € W are W-conjugate,
there is an element w € W of length [(w) < N(I(z) + I(y)) with y = wzw™!). An
explicit expression of the parabolic closure of W’ as a W-conjugate of a standard
parabolic subgroup of W may therefore be effectively determined from a finite set
of generators of W’ using Corollary 3 and Proposition 2.

We remark that a quite different algorithm for computing the parabolic closure
of a cyclic subgroup of W was given in [10], where it was used as a preliminary
step in various polynomial time algorithms for solving the conjugacy problem. De-
spite Proposition 2, an effective test for conjugacy of finitely-generated reflection
subgroups of W in general is not known to the author.

2. BACKGROUND AND PROOF OF RESULTS

As general references for facts on Coxeter groups and their reflection represen-
tations, root systems, Bruhat order etc used here, see [2] and [9]

2.1. Let (W, S) be a Coxeter system, {: W — N denote its standard length func-
tion, and T = {wsw™! | w € W, s € S} denote its set of reflections. For w € W, let
N(w) :={teT|Il(tw) <l(w) }. Let < denote Bruhat order on W, and e = 1.

A subgroup W' of W is called a reflection subgroup if it is generated by W/ NT.
Let W’ be a reflection subgroup of W. Then by [7] or [6], W’ has a canonical set of
Coxeter generators S = x(W) :={t €T | N(t)NnW' = {t} }. We say a subgroup of
W' is a standard parabolic subgroup of W’ if it is generated by a subset of x ().
A subgroup of W’ is called a parabolic subgroup of W’ if it is conjugate in W' to
a standard parabolic subgroup of W’. An algorithm for computing x(W') from a
finite set of reflections generating W’ is described in [7] and in more detail in [6].
The cardinality of x(W’) will be called the rank of W”’.

2.2.  Here, we recall some general facts from [8]. Let Qw,s) be the directed graph
with vertex set W and with set of directed edges { (tw,w) | w € W, t € N(w) },
where we view (tw,w) with ¢ € N(w) as an edge directed from tw to w. For
A C W, let Quw,s)(A) denote the full subgraph of Qyy, sy with vertex set A. Another
characterization of S" = x(W') amongst sets of Coxeter generators of W' is that for
any x € W, there is an element y € xW' such that the map Q) (zW’) — Qw51
given by w — y~'w an isomorphism of directed graphs. The element v is the unique
element of xW’ with N(y~!)NW’ = 0, the unique element of minimal length [(y) in
the coset W', the unique source of the graph Qy,s)(zW'’) and the unique element
y € W’ such that there is no edge (yr,y) in Quy,g) with r € x(W’). It is easy
to see from the last description of y that if W’ is finitely generated (i.e. x(W’') is
finite) then y is effectively computable from z and x(W’).
For use in the proof of Proposition 2, we record the following:

Lemma 1. Let W be a reflection subgroup of W and w € W. Fiz u € wW" with
N Y)NnW"” =0. Then x(wW"w™t) = ux(W")u=1.

Proof. Let S" := x(W"). Now wW"w=! = uW"”u~" clearly has uS"u~" as a set of
generators. Since the set y(ulW”u~1) of Coxeter generators of ulW"u~! is a minimal
set of generators of uW”u~!, it will suffice to show that uS"u=! C y(uW"u"1).
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Let s € §” i.e. s € T with N(s) N W” = {s}. To prove usu~t € x(uW"u"1), we
must show N(usu™!) NuW”u=! = {usu=!} or u ' N(usu=Hu N W"” = {s}. To
show this, regard N as a cocycle of W with values in the power set of T, regarded
as additive abelian group under symmetric difference and with left W-action by
conjugation, as in [7].

The cocycle condition gives N(usu™!) = N(u) + uN(s)u™t + usN(u=1)su™t.
Hence v ' N(usu™")u = N(u™t) + N(s) + sN(u"1)s. Since W = sW"s, we get

u N (usu ™ HunW” = (N ) nW"”) + (N(s) N W) + s(Nu ) nWw")s
=0+ {s}+0={s}
as required. O

2.3. Proof of Proposition 1. Suppose W' is generated by z1,...,z,,. Let W”"
be a reflection subgroup of W, and S” = x(W"). We have z; € W iff x; has
some reduced expression z; = r,---r in (W”S”) iff there is a directed path
e = Wo, Wy, ..., Wy = T3 in Quyn gy with ij;_ll =r; €S8 forj=1,...,niff
there is a directed path e = wo, w1, ..., w, = z; in Q,g) with ij;_ll =r; €8
for j = 1,...,n. Note that there are only finitely many directed paths from e to
z; in Qw,g), since all vertices y of such a path are in the (finite) Bruhat interval
[e, z;] and the standard length function of (W, S) strictly increases along the path.

Consider the subsets R of T such that R = x((R)) and for each i = 1,...,m,
there is some directed path e = wg, w1, ..., w, = x; (with n and the w; depending
on i) in Qw,s) with ij;_ll € R for j = 1,...,n. From above, such sets R
are precisely the sets of canonical Coxeter generators of the reflection subgroups
of (W, S) which contain W’. The above remarks also imply that the set of such
subsets R, when ordered by inclusion, has only finitely many minimal elements, say
Ry,...,R,, and that the reflection subgroups Wy, ..., W,, defined by W; = (R;)
for ¢ = 1,...,n have the required properties. In fact, any minimal set R as above
is a subset of the finite set TN {zy™! | <y < z; for some i =1,...,n}, so the
R; are effectively computable.

2.4. Recall that a parabolic subgroup of a parabolic subgroup of W is itself a
parabolic subgroup of W. Further, the intersection of two parabolic subgroups of
W is a parabolic subgroup of both of them, and hence also a parabolic subgroup of
W, by a well-known result of Kilmoyer (see [4, Theorem 2.7.4]; the proof there for
the case of finite W readily extends to arbitrary W). It follows that the intersection
W' of all parabolic subgroups containing a given finitely generated subgroup W’ of
W is the unique parabolic subgroup W" of W of minimal (finite) rank containing
W’. One calls W the parabolic closure of W’. Note that W' is a parabolic
subgroup of any (finite rank) standard parabolic subgroup of W which contains
w’.

2.5. Proof of Proposition 2. Suppose first that W” is a parabolic subgroup of
W. The remarks of the preceding subsection show that W' is a parabolic subgroup
of W, so wW"w™! = Wg for some K C J and w € W;. Write w = yz where
z € W and N(y ' )N W"” = (. Then Wx = yW'y~! so by Lemma 1, K =
XWk) =yx(Wy=t = {yary™t,...,ycny~ ' }. Letting ye;y~! = s; € K, we have
yley---cp)y~t =51 -+ s, as required.

Conversely, suppose s1,...,5, in J are pairwise distinct and w(cy -+ - ¢,)w™! =
§1-+-8, = c. We may assume without loss of generality that W is realized in its
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standard reflection representation (see e.g. [9, Ch 5]) on a real vector space V
with standard symmetric bilinear form, with associated root system ® and linearly
independent simple roots II. For @ € ®, we let s, € W denote the orthogonal
reflection in «. By enlarging V' and extending the form if necessary, we may assume
that the form (?|?) on V is non-degenerate.

Let s; = 54, and ¢; = sg, where o; € II and 3; € ®. Using non-degeneracy of
the form, it is easy to see that Im(e — ¢) = V' := >_"" | Ra; is n-dimensional. On
the other hand, if v;,...,vm € ® with ¢ = s, ---5,,,, then Im(e — s, ---5,,,) C
Yo Ry; is at most m-dimensional. Hence if ¢ = s, « -+ s, with m < n we get that
m=mn and 71,...,7, is a R-basis of V. Tt is well known (see e.g. [3, Proposition
3.3]) that ~; € V' implies s, € Wk for i =1,...,n, where K = {s1,...,5,}.

Applying the preceding paragraph with v; = w(;) shows that v; € V' and s, =
we;w™t € Wi fori =1,...,n. Write w = yz where z € W” and N(y~H)nW" = ().
Since W = (z¢;z7t | i = 1,...,n), it follows that yW"y~! C Wg. Choose a
reduced expression p = ry -+ -7 for p := ze1 - cpz7t in (W, x(W")). Then there
is a directed path e,rg, 7517k, ..., 71 TR—1TE = p in Qo (wrry). By Lemma 1,
conjugating by y gives a directed path

e yrky Ly arky Ly TRy = ypy T =81 s
in Qeywry-1 yywry-1))- The last path is also a directed path in Q(y,5). Now since
the s; are pairwise distinct, any path e = qo,q1,...,q = s1---8, in Qw,s) has
| = n and satisfies (g;q; ", |i=1,...,n) = (s1,...,5, ) (for example, by induction

on n). Hence k = n and (yriy=t |i=1,...,n) = Wg. Thus, yW"y=! D Wk.
Since the reverse inclusion has previously been established and z € W, we get
wW"w™! = yW"y~1 = Wk, completing the proof.

2.6. Proof of Corollary 3. Corollary 3 follows immediately from the remarks in
2.4 since they imply that the parabolic closure of W/ must be one of the subgroups
W; in Proposition 1.
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