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zoib: an R package for Bayesian Inference
for Beta Regression and Zero/One
Inflated Beta Regression
by Fang Liu and Yunchuan Kong

Abstract The beta distribution is a versatile function that accommodates a broad range of probability
distribution shapes. Beta regression based on the beta distribution can be used to model a response
variable y that takes values in open unit interval (0, 1). Zero/one inflated beta (ZOIB) regression
models can be applied when y takes values from closed unit interval [0, 1]. The ZOIB model is based a
piecewise distribution that accounts for the probability mass at 0 and 1, in addition to the probability
density within (0, 1). This paper introduces an R package – zoib that provides Bayesian inferences for
a class of ZOIB models. The statistical methodology underlying the zoib package is discussed, the
functions coved by the package are outlined, and the usage of the package is illustrated with three
examples of different data and model types. The package is comprehensive and versatile in that it
can model data with or without inflation at 0 or 1, accommodate clustered and correlated data via
latent variables, perform penalized regression as needed, and allow for model comparison via the
computation of the DIC criterion.

Introduction

The beta distribution has two shape parameters α1 and α2: Beta(α1, α2). The mean and variance of a
variable y that follows the beta distribution are E(y) = µ = α1(α1 + α2)

−1 and V(y) = µ(1− µ)(α1 +
α2 + 1)−1, respectively. A broad spectrum of distribution shapes can be generated by varying the two
shapes values of α1 and α2, as demonstrated in Figure 1. The beta regression has become more popular
in recent years in modeling data bounded within open interval (0, 1) such as rates and proportions,
and more generally, data bounded within (a, b) as long as a and b are fixed and known and it is sensible
to transform the raw data onto the scale of (0, 1) by shifting and scaling, that is, y′ = (y− a)(b− a)−1.
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Figure 1: Beta distribution with various values of the two shape parameters

Given the flexibility and increasing popularity of the beta regression, significant development has
been made in the theory, methodology, and practical applications of the beta regression
(Cepeda-Cuervo, 2001; Paolino, 2001; Williams, 1982; Prentice, 1986; Ferrari and Cribari-Neto, 2004;
Smithson and Verkuilen, 2006; Simas et al., 2010; Smithson and Verkuilen, 2006; Hatfield et al., 2012;
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Ospina and Ferrari, 2012; Cepeda-Cuervo, 2015). Mostly recently, Grün et al. (2012) apply the tech-
niques of the model-based recursive partitioning (Zeileis et al., 2008) and the finite mixture model
(Dalrymplea et al., 2003) in the framework of beta regression to account for heterogeneity between
groups/clusters of observations. They also propose bias-corrected or bias-reduced estimation in the
beta regression by applying the unifying iteration technique (Kosmidis and Firth, 2010).

In many cases of real life data, exact 0’s and 1’s occur in additional to y values between 0 and 1,
producing zero-inflated, one-inflated, or zero/one-inflated outcomes. Though the beta distribution
covers a variety of the distribution shape, it does not accommodate excessive values at 0 and 1.
Smithson and Verkuilen (2006) propose transformation n−1(y(n− 1) + 0.5), where n is the sample size,
so all data points after transformation are bounded within 0 and 1 and the regular beta regression can
be applied. This approach, while offering a simple way to circumvent the complexity from modeling
the boundary values, only shifts the excessiveness in point mass from one location to another. Hatfield
et al. (2012) model the zero/one inflated VAS responses by relocating all 1 to 0.9995 and keep 0 as
is, and apply the zero-inflated beta (ZIB) regression. The approach of only shifting 1 but not 0 when
there is inflation at both is ad-hoc especially if there is no justification for treating 0 differently from
1. From a practical perspective, the observed 0’s and 1’s might carry practical meanings that would
be otherwise lost if being replacing with other values, regardless how close the raw and substitutes
values are. Ospina and Ferrari (2012) propose the zero-or-one inflated beta regression model (inflation
at either 0 or 1, but not both) and obtain inferences via the maximum likelihood estimation (MLE).
When there is inflation at both 0 and 1, it is sensible to model the excessiveness explicitly with the
zero/one inflated beta (ZOIB) regression, especially when population 0’s and 1’s are real. For example,
if the response variable is the death proportion of mice on different doses of a chemical entity; the
death rate caused by administration of the chemical entity theoretically can be 0 when its dosage is
0, and 1 when the dosage increases to a 100% lethal level. The ZOIB regression technique has been
previously discussed in the literature (Swearingen et al., 2012). Most beta regression and zoib models
focus on fixed effects models only, and thus cannot handle clustered or repeated measurements. Liu
and Li (2014) apply a joint model with latent variables to model the dependency structure among
multiple [0, 1]-bounded responses with repeated measures in the Bayesian framework.

From a software perspective, beta regression can be implemented in a software suite or package
that accommodate nonlinear regression models, such as SPSS (NLR and CNLR) and SAS (PROC
NLIN, PROC NLMIXED). There are also contributed packages or macros devoted specifically to beta
regression, such as the SAS macro developed by Swearingen et al. (2011), which implements the beta
regression directly and provides residuals plots for model fit diagnostics. In R, there are a couple of
packages targeted specifically at beta regression. betareg (Zeileis et al., 2013) models a single response
variable bounded within (0, 1), with fixed-effects linear predictors in the link functions for the mean
and precision parameter of the beta distribution (Cribari-Neto and Zeileis, 2010). The package is
later updated by Grün et al. (2012) to perform bias correction/reduction, model-based recursive
partitioning, and finite mixture models with added functions betatree() and betamix() in package
betareg. In betareg, the coefficients of the regression are estimated by the MLE and inferences are
based on large sample assumptions. Bayesianbetareg (Marin et al., 2013) allows the joint modelling
of mean and precision of a single response in the Bayesian framework, as is proposed in Cepeda-
Cuervo (2001), with logit link for the mean and logarithmic for the precision. Neither betareg nor
Bayesianbetareg accommodate inflation at 0 or 1 (betareg transforms y with inflation at 0 and 1
using (y(n− 1) + 0.5)n−1); neither can model multiple response variables, repeated measures, or
clustered/correlated response variables. In other words, the linear predictors in the link functions
of the mean and precision parameters of the beta distribution in both betareg and Bayesianbetareg
contain fixed effects only.

In this discussion, we introduce a new R package zoib (Liu and Kong, 2014) that models responses
bounded within [0, 1] – without inflation at 0 nor 1, with inflation at 0 only, at 1 only, or at both 0 and 1.
The package can model a single response with or without repeated measures, or multiple or clustered
[0, 1]-bounded response variables, taking into account the dependency among them. Compared to the
existing packages on beta regression in R, zoib is more comprehensive and flexible from the modeling
perspective and can accommodate more data types. The inferences of the mdoel parameters in package
zoib are obtained in the Bayesian framework via the Markov Chain Monte Carlo (MCMC) approach
as implemented in JAGS Plummer (2014).

The rest of the paper is organized as follows. Section 2.2 describes the methodology underlying
the ZOIB regression. Section 2.3 introduces the package zoib, including its functionality and outputs.
Section 2.4 illustrates the usage of the package with 3 real-life data sets and 1 simulated data of
different types. The paper ends in Section 2.5 with summaries and discussions.
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Zero/one Inflated Beta Regression

the ZOIB model

Suppose yj is the jth variable out of a total p response variables measured on n independent units,
that is, yj = (y1j, . . . , ynj)

t. The zoib model assumes yij follows a piecewise distribution when yij has
inflation at both 0 and 1.

f (yij|ηij) =


pij if yij = 0
(1− pij)qij if yij = 1
(1− pij)(1− qij)Beta(αij1, αij2) if yij ∈ (0, 1).

(1)

pij is the probability of yij = 0, and qij is the conditional probability Pr(yij = 1|yij 6= 0), and αij1 and
αij2 are the shape parameters of the beta distribution when yij ∈ (0, 1). The probability parameters
from the binomial distributions and the two shape parameters from the beta distributions are linked to
observed explanatory variables xij or unobserved latent variable zij via link functions. Some natural

choices for the link functions for pij, qij, and the mean of the beta distribution µ
(0,1)
ij = E(yij|yij ∈

(0, 1)) = αij1(αij1 + αij2)
−1, which are all parameters within (0, 1), include the logit function, the

probit function, or the complementary log-log (cloglog) function. While the binomial distribution is
described by a single probability parameter, the beta distribution is characterized by two parameters.
The variance of the beta distribution is not only a function of its mean but also the sum of two

shape parameters νij = αij1 + αij2; that is, V(yij|yij ∈ (0, 1)) = µ
(0,1)
ij (1− µ

(0,1)
ij )(αij1 + αij2 + 1)−1 =

µ
(0,1)
ij (1− µ

(0,1)
ij )(νij + 1)−1. νij is often referred to as the precision (dispersion) parameter and can also

be affected by external explanatory variables or latent variables (Simas et al., 2010; Cribari-Neto and
Zeileis, 2010). An example of the formulation of the zoib model, if the logit function is applied to pij,

qij, and µ
(0,1)
ij , and the log link function is applied to νij, is

logit(µ(0,1)
ij ) = x1,ijβ1j + I1(z1,iγ1) (2)

log(νij) = x2,ijβ2j + I2(z2,iγ2) (3)

logit(pij) = x3,ijβ3j + I3(z3,iγ3) (4)

logit(qij) = x4,ijβ4j + I4(z4,iγ4), (5)

where βm,j represents the linear fixed effects in link function m (m = 1, 2, 3, 4) for response j (j =
1, . . . , p); xm,ij is the design matrix for the fixed effects; Im(zm,iγm) is an indicator function on whether
link function m has a random component or not, that is, Im(zm,iγm) = zm,iγm if link function has a
random component, Im(zm,iγm) = 0 otherwise. zm,i represents the design matrix associated with the

random components; γm ∼ N(0, Σm), and thus zm,iγm
ind∼ N(0, zt

m,iΣmzm,i) for i = 1, . . . , n in link
function m. Dependency among the p response variables are modeled through their sharing of zm,iγm.

Taken together, equations (2) to (5) give a full parameterization of the ZOIB model. In terms of the
interpretation of the parameters as given in equations (2) to (5), exp(β1j)/(1 + exp(β1j)) is the mean
of the beta distribution in the zoib model (equation (1)), exp(β2j) is sum of the two shape parameters
from the marginal beta distribution, exp(β3j)) is the odds that yj = 0, and exp(β4j)) is the odds that
yj = 1. The conditional mean of yij given zm,i is

E(yij|γ1, γ2, γ3, γ4) = (1− pij)
(

qij + (1− qij)µ
(0,1)
ij

)
(6)

=
exp{x2,ijβ2j + I2(z2,iβ2j)}+ exp{x3,ijβ3j + I3(z3,iβ3j)}(1 + exp{x3,ijβ3j + I3(z3,iβ3j)})−1

(1 + exp{x1,ijβ1j + I1(z1,iβ1j)})(1 + exp{x2,ijβ2j + I2(z2,iβ2j)})

If Im(zm,iγm) = 0 for all m (no random components in all link functions), then equation (6) can be
simplified to

exp{x2,ijβ2j}+ exp{x3,ijβ3j}(1 + exp{x3,ijβ3j})−1

(1 + exp{x1,ijβ1j})(1 + exp{x2,ijβ2j})

Calculation of the marginal mean of yij involves integrating out γm over its distribution; that is,
E(yij) =

∫
E(yij|γ1, γ2, γ3, γ4) f (γ1|Σ1) f (γ2|Σ2) f (γ3|Σ3) f (γ4|Σ4)dγ1dγ2dγ3dγ4, which can become

computationally and analytically tractable if the MLE approach is taken. In contrast, E(yij) is easier to
obtain by the Monte Carlo approach in the Bayesian computational framework.
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Various reduced forms of the fully parameterized model as given in equations (2) to (5) are
available. For example, if a constant dispersion parameter is assumed, then equation (3) can be
simplified log(νij) = cj that differs only by response variable. In practice, it might also be reasonable to
assume zm,iγm is the same across all links functions, that is, Σm = Σ, since information to distinguish
among Σm’s is unlikely available in many real life applications.

Bayesian inference

Though the inferences of the parameters in the proposed ZOIB model can be obtained via the MLE
approach, the task can be analytically and computationally challenging, considering the nonlinear
nature of the model and existence of possible random effects. We adopt the Bayesian inferential
approach in package zoib. Let Θ = {β1, β2, β3, β4, Σ} denote the set of the parameters from the ZOIB
model (zoib sets γm = γ and Σm = Σ ∀ m). The joint posterior distribution of Θ and the random
effects γ given data y is p(Θ, γ|y) ∝ p(y|Θ, γ)p(γ|Θ)p(Θ). The likelihood p(y|Θ, γ) is constructed
from the ZOIB model in equation (1)

p(y|Θ, γ) ∝ ∏
i

∏
j

{
p

I(yij=0)
ij (1− pij)

I(yij>0)q
I(yij=1)
ij (1− qij)

I(yij=1)
}
×

 Γ(νij)

Γ(νijµ
(0,1)
ij )Γ(νij(1− µ

(0,1)
ij ))

(yij)
νijµ

(0,1)
ij −1(1− yij)

νij(1−µ
(0,1)
ij )−1


I(yij∈(0,1))

,

noting pij, qij, νij and µ
(0,1)
ij are functions of Θ, and p(γ|Θ) ∼ N(0, Σ). zoib assumes all the parameters

in Θ are a priori independent, thus f (Θ) = f (Σ)∏
p
j=1 ∏4

m=1 f (βmj). zoib offers the following prior
choices on βm,j:

• Diffuse normal (DN) on all intercept terms βm,j0 ∼ N(0, C), where C is the precision of the nor-
mal distribution that can be specified by users. The smaller C is, the more “diffuse” the normal
distribution is (the less a priori information there is about βm,j0). The default C = 10−3.

• For the rest of elements in βm,j (minus the intercept term), there are 4 options:

� diffuse normal (DN, default): βm,jk
ind∼ N(0, C) across k = 1, . . . , pm for a given j (j = 1, . . . , q)

and m (m = 1, . . . , 4). C is the precision of the normal distribution that can be specified by
users; the default C = 10−3.

� L2-prior (L2): The L2 prior shrinks the regression coefficients in the same link function m on
the same variable yj in a L2 manner as in ridge regression(Lindley and Smith, 1972). The L2

prior helps when there is non-orthogonality among the covariates. βm,jk|λm,jk
ind∼ N(0, λm,j)

for k = 1, . . . , pm and the precision parameter λm,j
ind∼ inv-gamma(α, β) given j and m. α and

β, the shape and scale parameters of the inverse gamma distribution, are small constants that
can be specified by the user. The default is α = β = 10−3 for all m and j.

� L1-prior (L1): The L1 prior shrinks the regression coefficients in the same link function m on
the same variable yj in a L1 manner(Lindley and Smith, 1972) as in Lasso regression (Park
and Casella, 2008). As such, the L1-prior helps there is a large of covariates and sparsity in

the regression coefficients is desirable. βm,jk|λm,jk
ind∼ N(0, λm,jk) and λm,jk

ind∼ exp(εm,j) for
k = 1, . . . , pm given j and m. εm,j is a small constant that can be specified by users. The default
εm,j = 10−3 for all m and j.

� automatic relevance determination (ARD): ARD, as the L2 and L1 priors, regularizes the
regression coefficients toward sparsity. Different from the L2 prior, where every coefficient
has the same precision parameter λm,j, the precision is coefficient-specific in the ARD prior

(MacKay, 1996; Neal, 1994): βm,jk|λm,jk
ind∼ N(0, λm,jk) and λm,jk

ind∼ inv-gamma(αm,j, βm,j) for
k = 1, . . . , pm given j and m. αm,j, βm,j are small constants that can be specified by users. The
default αm,j = βm,j = 10−3 for all m and j.

Regarding the random effects specification in zoib, it is assumed z ∼ N(0, σ2) in the case of a single
random variable z; when there are multiple random variables z1, . . . , zL, it is assumed z ∼ N(0, Σ).
zoib offers two structures on Σ: variance components (VC) and unstructured (UN).

• In the VC case, Σ is diagonal, indicating all the random variables are independent. zoib offers two
priors on σl , the standard deviation of zl (l = 1, . . . , L): 1) σl ∼ unif(0, C), where C is a large constant
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that can be specified by users (default C = 20); 2) σl ∼ half-Cauchy(C), the half-t distribution with

degree freedom equal to 1. Symbolically, f (σj) ∝
(

1 + σ2
j C−2

)−1
, where C is the scale parameter

(Gelman, 2006) (default C = 20). The half-Cauchy distribution is the default in zoib.

• When Σ is fully parameterized with L(L + 1)/2 parameters (the UN structure), we write Σ =
Diag(σl) · R · Diag(σj), where R is the correlation matrix . The priors for σl for l = 1, . . . , L are
the same as in the VC case. zoib supports L up to 3 in the UN structure. When L = 2, there
is a single correlation parameter and a uniform prior is imposed ρ ∼unif(0, 1). When L = 3,
the uniform prior is imposed on two out of three correlation coefficients, say ρ12 ∼unif(0, 1) and
ρ12 ∼unif(0, 1). In order to ensure positive definitiveness of R, ρ23 has to be bounded within (L, U),

where L = ρ12ρ13 −
√
(1− ρ2

12)(1− ρ2
13) and U = ρ12ρ13 +

√
(1− ρ2

12)(1− ρ2
13). The prior on ρ13

is thus specified as unif(L, U).

All taken together, zoib offers 4 options on the prior for the covariance matrix Σ in the case of more
than one random variables: VC.unif, VC.halft, UN.unif, and UN.halft.

Implementation in R

The joint distribution f (Θ, γ|y) in the zoib model is not available in closed form. We apply slice
sampling(Neal, 2003), a Markov chain Monte Carlo (MCMC) method, to draw posterior samples
on the parameters leveraging on the available software JAGS (Plummer, 2014). Before using zoib,
users need to download JAGS and the R package rjags that offers a connection between R and JAGS.
The main function in zoib generates a JAGS model object, and the posterior samples on the model
parameters, the observed y and their posterior predictive values, and the design matrices x1, x2, x3 and
x4, as applicable. Convergence diagnostics, mixing of the MCMC chains, summary of the posterior
draws, and the deviance information criterion (DIC) (Spiegelhalter et al., 2002) of the model can be
calculated using the functions already available in packages coda and rjags. Trace plots and auto-
correlation plots can be generated, the Gelman-Rubin’s potential scale reduction factor (psrf) (Gelman
and Rubin, 1992) and multivariate psrf (Brooks and Gelman, 1998) can be computed. To check on the
mixing and convergence of the Markov chains, multiple independent Markov chains should be run.
More details on the output and functions of zoib are provided in Section 2.3 below.

The package zoib contains 23 functions (Table 1). Users can call the main function zoib( ),
which produces a MCMC (JAGS) model object and posterior samples of model parameters as an
MCMC object, among others. Convergence of the MCMC chains can be checked using the trace-
plot(MCMC.object), autocorr.plot(MCMC.object) and gelman.diag(MCMC.object) functions pro-
vided by package coda. Posterior summary of the parameters can be obtained by function summary
if the posterior draws are in a format of a mcmc.list. The DIC of the proposed model can be calculated
using function dic.samples(JAGS.object) available in rjags for model comparison purposes. Besides
these existing functions, zoib provides an additional function check.psrf( ) that checks whether multi-
variate psrf value can be calculated for multi-dimensional model parameters, provides box plots and
summary statistics on multiple univariate psrf values, and the paraplot( ) function which provides a
visual display on the posterior inferences on the model parameters. The remaining 20 functions are
called internally by function zoib( ). The main function zoib( ) is used as follows:

zoib(model, data, zero.inflation = TRUE, one.inflation = TRUE, joint = TRUE, random = 0,
EUID, link.mu = "logit", link.x0 = "logit", link.x1 = "logit", prior.beta = rep("DN",4),
prec.int = 0.001, prec.DN = 0.001, lambda.L2 = 0.001, lambda.L1 = 0.001,
lambda.ARD = 0.001, prior.Sigma = "VC.halft", scale.unif = 20, scale.halft = 20,
n.chain = 2, n.iter = 5000, n.burn=200 , n.thin = 2)

data represents the data set to be modeled. model presents a symbolic description of the zoib
model in the format of formula responses y ∼ covariates x. zero.inflation and one.inflation contain
the information on whether the data has inflation at zero or one. joint specifies whether to model
multiple response variables jointly or separately. random = 0 indicates the ZOIB model has no random
effects; random = m (for m = 1, 2, 3, 4) instructs zoib which linear predictor(s) out of the four (as
given in equations (2) to (5) have a random component. For example, if random = 13, then the linear
predictors associated with the link function of the mean of the beta regression (1) and the probability
of zero inflation (3) have a random component, while the linear predictors associated with the link
function of the precision parameters of (2) and the probability one inflation (4) do not have a random
component. Similarly, if random = 124, then the linear predictors associated with the mean (1) and
precision parameters (2) of the beta distribution, and the probability of one inflation (4) have a random
component, but the link function associated with the probability of zero inflation (4) does not. random
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Table 1: Functions Developed in Package zoib

Function Description
Functions called by users

zoib( ) main function; produces a MCMC (JAGS) model object and
posterior samples of model parameters

check.psrf( ) checks whether the multivariate psrf value can be calculated for
multi-dimensional parameters; provides a box plot and summary
statistics for multiple univariate psrf values

paraplot( ) plots the posterior mode, mean, or median with Bayesian credible
intervals for the parameters from a zoib model.

Internal functions called by zoib( )
fixed-effect model

fixed( ) without y inflation at 0 or 1
fixed0( ) with y inflation at 0 only
fixed1( ) with y inflation at 1 only
fixed01( ) with y inflation at at both 0 and 1

joint modeling of ≥ 2 response variables when there is a single random variable
join.1z( ) without y inflation at 0 or 1
join.1z0( ) with y inflation at 0 only
join.1z1( ) with y inflation at 1 only
join.1z01( ) at both 0 and 1

joint modeling of ≥ 2 response variables when there are ≥ 2 random variables
join.2z( ) without y inflation at 0 or 1
join.2z0( ) with y inflation at 0 only
join.2z1( ) with y inflation at 1 only
join.2z01( ) with y inflation at both 0 and 1

separate modeling of ≥ 2 response variables when there is a single random variable
sep.1z( ) without y inflation at 0 or 1
sep.1z0( ) with y inflation at 0 only
sep.1z1( ) with y inflation at 1 only
sep.1z01( ) at both 0 and 1. called by function zoib( ).

separate modeling of ≥ 2 response variables when there are ≥ 2 random variables
sep.2z( ) without y inflation at 0 or 1
sep.2z0( ) with y inflation at 0
sep.2z1( ) with y inflation at 1 only
sep.2z01( ) with y inflation at both 0 and 1

= 1234 would suggest all 4 linear predictors have random components. There are total 24 − 1 = 15
possibilities to specify the random components and zoib supports all 15 possibilities.

The remaining arguments in function zoib( )are necessary for Bayesian model formulation and
computation, including the hyper-parameter specification in the prior distributions of the parameters
in the ZOIB model (prior.beta, prec.int, prec.DN, lambda.L2, lambda.L1, lamdda.ARD, scale.unif,
scale.halft, prior.Sigma), the number of Markov chains to run (n.chain), the number of MCMC
iterations per chain (n.iter), and the burin-in period (n.burn) and thinning period (n.thin). In addition,
the link functions that relate linear predictors to Pr(y = 0), Pr(y = 1), and µ(0,1) can be chosen from
logit (the default), probit, and cloglog. The link function that links a linear predictor to the sum of the
two shape parameters of the beta distribution is the log function.

Table 2 lists the functions offered package coda and rjags that can be used to check the convergence
of the MCMC chains from the ZOIB models, to compute the posterior summaries of the model
parameters, and to calculate the penalized deviance of the converged models.

Examples

We apply the package zoib to three examples. In the first example zoib is applied to analyze the
GasolineYield data available in R package betareg, to provide a comparison between the results
obtained from the two packages. There is no inflation in either 0 or 1 in data GasolineYield. In example
2, zoib is applied to a simulated data with two correlated beta variables, where joint modeling of the
variable is used with a single random variable. In example 3, zoib is applied to a real life data on alcohol
use in California teenagers. Example 3 is used to demonstrate how to model clustered beta variables
via zoib. The data set in example 3 can be downloaded from website http://www.kidsdata.org. In
all three example, the ZOIB model is specified using the generic function formula in R. When there
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Table 2: Existing functions for checking the convergence and mixing of the Markov chain of the ZOIB
model and summarizing the posterior samples

Function Description
traceplot( ) plots number of iterations vs. drawn values for each parameter in

per Markov chain (from package coda)
autocorr.plot( ) plots the autocorrelation for each parameter in each Markov chain

(from package coda)
gelman.diag( ) calculates the potential scale reduction factor (psrf) value for each

variable drawn from at least two Markov chains, together with the
upper and lower 95% confidence limits. When there are multiple
variables, a multivariate psrf value is calculated (from package coda)

dic.samples( ) extracts random samples of the penalized deviance from a jags
model (from package rjags)

summary( ) calculates posterior mean, standard deviation, 50%, 2.5% and 97.5%
for each parameters using the posterior draws from Markov chains

are multiple response variables, each variable should be separated by |, such as y1|y2|y3 on the left
hand side of the formula. On the right side of the formula, it can take up to 5 parts in the following
order:

1. fixed-effect variables x1 in the link function of the mean of the beta distribution;

2. fixed-effect variables x2 in the link function of the precision parameter of the beta distribution;

3. fixed-effect variables x3 in the link function of Pr(y = 0);

4. fixed-effect variables x4 in the link function of Pr(y = 1); and

5. random-effects variables z.

x1 and x2 should always be specified, even if x2 contains only an intercept (represented by 1). If there
is no zero inflation in any of the y’s, then the x3 part can be omitted, similarly with x2 and the random
component z. For example, if there are 3 response variables y1, y2, y3 and 2 independent variables
(xx1, xx2), and none of the y’s has zero inflation, then model y1 | y2 | y3 ∼ xx1 + xx2 | 1 | xx1 | xx2
implies x1 = (1, xx1, xx2), x2= 1 (intercept), x3 = NULL, x4 = (1, xx1), z = (1, xx2). If y1 has inflation at
zero, y3 has inflation at one, and there is no random effect, model y1 | y2 | y3 ∼ xx1 + xx2 | xx1 |
xx1 implies x1 =(1, xx1, xx2), x2 = (1 ,xx1), x3 = c(1, xx1) for y1, x4 = (1, xx1) for y3. The details on how
to specify the model using formula can be found in the user manual of package zoib.

Example 1: univariate fixed-effect beta regression

According to the description in betareg, the GasolineYield data was collected by Prater (1956) and
analyzed by Atkinson (1985). The data set contains 32 observations and 6 variables. The dependent
variable is the proportion of crude oil after distillation and fractionation. There is no 0 or 1 inflation in
y. betareg fits a beta regression model with all 32 observations and 2 independent variables: batch
ID (1, . . . , 10) corresponding to 10 different crudes that were subjected to experimentally controlled
distillation conditions, and temp (quantitative, Fahrenheit temperature at at which all gasoline has
vaporized). Both batch and temp are treated as fixed effects.

logit
(

α1
α1 + α2

)
= β0 + β1 · temp + β2 · batch1 + ... + β10 · batch9,

log(α1 + α2) = η.

The R command for fitting the model using betareg is

library(zoib)
library(betareg)
data("GasolineYield", package = "zoib")
GasolineYield$batch <- as.factor(GasolineYield$batch)

#### betareg
gy <- betareg(yield ~ temp + batch, data = GasolineYield)
summary(gy)$coeff

Fitting the same model in zoib, we have
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#### zoib: fixed effect on batch.
d <- GasolineYield
eg1.fixed <- zoib(yield ~ temp + as.factor(batch)| 1, data=GasolineYield, joint = FALSE,

random = 0, EUID = 1:nrow(d), zero.inflation = FALSE, one.inflation = FALSE,
n.iter = 1050, n.thin = 5, n.burn=50)

sample1 <- eg.fixed$coeff
# check convergence of the MCMC chains
traceplot(sample1); autocorr.plot(sample2); gelman.diag(sample1)

The zoib procedure took about 25 seconds on a PC with Intel Core-i5 2520M CPU 2.5GHz (2 chains,
1050 iterations, burin-in periods = 5, and thinning period = 5 per chain). The trace plots, the autocorre-
lation plots, and the values of the potential scale reduction factors (psrf) (Gelman and Rubin, 1992;
Brooks and Gelman, 1998) suggest the Markov chains mixed well and reached satisfactory convergence
(Appendix Figure A1 and Table A1).

If the 10 batches constitute a random sample of many possible batches and the mean of each batch
is of little interest, we can treat batch as a random variable rather than dummying code batch. The
following model is zoib is a mixed-effects model with a random component in the link function of the
mean of the beta distribution.

#### zoib: random effect on batch
eg1.random <- zoib(yield ~ temp | 1 | 1, data=GasolineYield, joint = FALSE,

random=1, EUID=GasolineYield$batch, zero.inflation = FALSE,
one.inflation = FALSE, n.iter = 10200, n.thin=50, n.burn=200)

sample2 <- eg1.random$oripara
summary(sample2); traceplot(sample2); autocorr.plot(sample2); gelman.diag(sample2)

The above procedure took about 42 seconds on a PC with Intel Core-i5 2520M CPU 2.5GHz (2 chains,
10200 iterations, burin-in periods = 50, and thinning period = 50 per chain). The trace plots, the
auto-correlation plots, and the psrf values suggest that the Markov chains mixed well and converged
(Appendix Figure A2 and Table A1).

The inferential results on the parameters from all three analyses (betareg, zoib-fixed, zoib-random)
are depicted in Figure 2, which is generated using the paraplot function.

### posterior inferences from zoib: fixed
summ1 <- summary(sample1); summ1<- cbind(summ1$stat[,1],summ1$quant[,c(1,5)])
### posterior inferences from zoib: random
summ2 <- summary(sample2); summ2<- cbind(summ2$stat[,1],summ2$quant[,c(1,5)])
summ2<- summ2[-4,]
### inferences from betareg
summ3 <- cbind(c(summ3$mean[,1],summ3$precision[,1]), confint(gy))
summ3[12,] <- log(summ3[12,]) #log-precision
### plot
names = rownames(summ3); names[1] <- "intercept"; names[12] <- "log(precision)"
rownames(summ1)<- names; rownames(summ3)<- names; rownames(summ2)<- names[c(1,2,12)]
paraplot(summ1, summ2, summ3, legpos=c(2,10),annotate=TRUE,

legtext=c("zoib: fixed","zoib: random","betareg"))

Figure 2 suggests minimal difference between the Bayesian and the frequentist approaches in the
inferences of the intercept and regression coefficients in the fixed-effects model. The posterior mean
of η (log sum of the two shape parameters in the beta distribution) is numerically smaller from the
Bayesian approach compared to the MLE of the frequentist approach. The mixed-effects approach
yields similar estimates on η and the regression coefficients as in the fixed effect approaches, but the
point estimate on the intercept is smaller. Appendix Figure A3 also presents the posterior mean of
y plotted against the observed y for the two zoib models, and suggests both zoib models provide
satisfactory goodness-of-fit.

Example 2: bivariate repeated measures

Example 2 demonstrates how to jointly model multiple [0, 1]-bounded response variables using zoib.
The data set contains two beta variables (yi1, yi2) from 200 independent cases (i = 1, ..., 200). Both
yi1 and yi2 are repeatedly measured at a set of covariate values x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6). That is,
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Figure 2: Inferences of model parameters in Example 1 (posterior mean and 95% posterior interval
from zoib; MLE and 95% CI from betareg)

yi1 = (yi11, yi12, . . . , yi16), and yi2 = (yi21, yi22, . . . , yi26). BiRepeated is a simulated data set from the
following model,

logit

(
αijk,1

αijk,1 + αijk,2

)
= (β0j + ui1) + (β1j + ui2)xijk

log(αijk,1 + αijk,2) = ηj, and (7)

ui = (ui1, ui2) ∼ N(2)(0, Σ), where Σ = Diag(σ) R Diag(σ)

where i = 1, . . . , 200 and k = 1, . . . , 6, β01 = −1, β11 = 1, β02 = −2, β12 = 2, ρ = 0, and σ2 =
(σ2

1 , σ2
2 ) = (0.2, 0.2). σ1 and σ2 are the marginal standard deviation of the two random variables ui1

and ui2, and R =
(

1 ρ
ρ 1

)
is the correlation matrix. The data is available in R by name BiRepeated

in package zoib. The joint model as given in equation (7) is applied to the data. The priors for the
model parameters are β0j ∼ N(0, 10−3), β1j ∼ N(0, 10−3), ηj ∼ N(0, 10−3), σj ∼ unif(0, 20), and
ρ ∼ unif(−1, 1). The R codes for realizing the above model are

library(zoib)
data("BiRepeated", package = "zoib")
eg2 <- zoib(y1|y2 ~ x|1|x, data=BiRepeated, random=1, EUID=BiRepeated$id,

zero.inflation=FALSE, one.inflation=FALSE, prior.Sigma="UN.unif",
n.iter=7000,n.thin=25,n.burn=2000)

post.sample <- eg2$oripara; summary(post.sample)

The above procedure took about 3 hours 55 minutes on a Linux server with 2.4 GHz AMD Opteron
processors (2 chains, 7000 iterations, burin-in periods is 2000, and thinning period is 25 per chain). The
trace plots, the auto-correlation plots, and the psrf values suggest that the Markov chains mixed well
and converged (Appendix Figures A4 and Table A2).

The Bayesian inferences on β0j, β1j and ηj for j = 1, 2 are given in Table 3. Note the purpose of
example 2 is to demonstrate how zoib can model the correlated data; so only one simulated data set is
used. The posterior means of β and ηj are nevertheless close to the true parameter values used to the
simulate the data, even with the finite not-so-large sample size (n = 200).
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Table 3: Bayesian Inferences of the joint ZOIB model parameters in Example 2

Parameter posterior mean posterior median 2.5% quantile 97.5% quantile
β01 -0.957 -0.958 -1.059 -0.866
β11 0.906 0.903 0.720 1.092
β02 -2.022 -2.020 -2.119 -1.935
β12 2.040 2.040 1.865 2.234
η1 2.505 2.506 2.433 2.582
η2 3.014 3.017 2.926 3.091
σ2

1 0.180 0.179 0.135 0.235
σ2

2 0.334 0.331 0.152 0.530
ρ -0.70 -0.70 -0.84 -0.62

Example 3: clustered zero-inflated beta regression

In this example, zoib is applied to the county-level monthly alcohol use data collected from students
in California from year 2008 to 2010. The data is available in zoib by name AlcoholUse. The data can
be downloaded at http://www.kidsdata.org. AlcoholUse contains the percentage of public school
students in grades 7, 9, and 11 reporting the number of days in which they drank alcohol in the past
30 days by gender (students at the “Non-Traditional" grade level refer to those enrolled in Community
Day Schools or Continuation Education and are not included in this analysis). The following model is
fitted to the data

logit

(
αij,1

αij,1 + αij,2

)
= (β1,0 + ui) + β1xij

log(αij,1 + αij,2) = η

logit(pij) = β2,0 + β2xi j

ui ∼ N(0, σ−2)

where ui is the cluster-level (county-level) random variable (i = 1, . . . , 56) and j indexes the jth case
in cluster i. β1,1 contains the regression coefficients associated with the main effects associated with
gender, grade, and the mid-point of each days bucket on which teenagers drank alcohol, and the
interaction between gender and grade; so does β2,1. σ−2 is the precision of the distribution of random
effect ui. The prior specification of the model parameters are: β1,0 ∼ N(0, 10−3), β2,0 ∼ N(0, 10−3),

β1,k
ind∼ N(0, 10−3) and β2,k

ind∼ N(0, 10−3) for k = 1, . . . , 6, η ∼ N(0, 10−3), and σ ∼ unif(0, 20). The R
codes for realizing the model in zoib are

data("AlcoholUse", package = "zoib")
AlcoholUse$Grade <- as.factor(AlcoholUse$Grade)
eg3 <- zoib(Percentage ~ Grade*Gender+MedDays|1|Grade*Gender+MedDays|1,

data = AlcoholUse, random = 1, EUID=AlcoholUse$County,
zero.inflation = TRUE, one.inflation = FALSE, joint = FALSE,
n.iter=5000, n.thin=20, n.burn=1000)

sample1 <- eg3$coeff
summary(sample1)

The above procedure took about 10 hours 56 minutes on a Linux server with 2.4 GHz AMD Opteron
processors (2 chains, 5000 iterations, burin-in periods is 1000, and thinning period is 20 per chain). The
trace plots, the auto-correlation plots, and the psrf values suggest that the Markov chains mixed well
and reached satisfactory convergence (Appendix Figures A5 and Table A4).

The results from example 3 are presented in Table 4. The posterior mean difference in the
logit(mean) of the beta distribution between a 9-th grader and a 7-th grader is 0.702 (β1,1), assuming
they are of the same gender, and fall in the same Days Bucket. Similarly, the posterior mean difference
in logit(mean) of the beta distribution between a male and a female students is -0.0503 (β1,3), assuming
they are equal with regard to other covariates. The posterior mean difference logit(Pr(y = 0) between
a a 9-th grader and a 7-th grader is β2,1 = −0.563; in other words, the ratio in the odds of not drinking
alcohol between the a 7-th grader and a 9-th grader is exp(0.563) = 1.75. The other parameters in β1
and β2 can be interpreted in a similar manner. The posterior mean of the log(sum of the two shape
parameters) η in the beta distribution is 4.389, and the posterior mean of the variance of the random
effect ui is 0.021.
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Table 4: Posterior inferences (Example 3)

Effect Parameter mean median 2.5% quantile 97.5% quantile
Intercept β1,0 -2.392 -2.392 -2.484 -2.299
Grade 9 β1,1 0.702 0.702 0.609 0.791
Grade 11 β1,2 0.955 0.956 0.869 1.036
Gender M β1,3 -0.053 -0.052 -0.156 0.054
MedDays β1,4 -0.092 -0.092 -0.096 -0.088
Grade 9*Gender M β1,5 -0.123 -0.118 -0.255 0.003
Grade 11*Gender M β1,6 0.053 0.055 -0.087 0.193
intercept β2,0 -3.365 -3.332 -4.158 -2.635
Grade 9 β2,1 -0.563 -0.572 -1.648 0.427
Grade 11 β2,2 -0.874 -0.884 -2.027 0.181
Gender M β2,3 0.465 0.469 -0.382 1.329
MedDays β2,4 0.028 0.028 -0.003 0.062
Grade 9*Gender M β2,5 -0.246 -0.213 -1.628 0.999
Grade 11*Gender M β2,6 -0.664 -0.695 -2.117 1.015

η 4.384 4.385 4.302 4.463
σ2 0.021 0.020 0.011 0.034

Discussion

We have introduced an R package for obtaining the Bayesian inferences from the beta regression and
zero/one inflated beta regression. We have provided the methodological background behind the
package and demonstrated how to apply the package using both real-life and simulated data. zoib
is more versatile and comprehensive from a modeling perspective compared to other R packages
betareg and Bayesainbetareg on beta regression. First, zoib accommodates boundary inflation at 0
or 1. Second, it models clustered and correlated beta variables by introducing random components
into the linear predictors of the link functions, and users can specify which linear predictors have
a random component. Last but not least, the Bayesian inferential approach provides a convenient
way for obtaining inferences for parameters that can be computationally expensive in the frequentist
approach, such as the marginal means of response variables when there are random effects. For the
regression coefficients in a linear predictor, 4 different priors are offered with options for penalized
regression if needed. DIC criteria can be calculated using existing function from package rjags for
model comparison purposes. Future updates to the zoib package include the development of more
efficient computational algorithms to shorten the computational time in running the MCMC chains,
especially when a zoib model contains a relatively large number of parameters.
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Figure A1: Trace and auto-correlation plots in the zoib-fixed model in example 1
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(a) trace plot (b) auto-correlation plot

Figure A2: Trace and auto-correlation plots in the zoib-random model in example 1

Table A1: Potential scale reduction factors of the zoib model parameters in Example 1

zoib-fixed zoib-random
Parameter point upper bound (95%) point upper bound (95%)
β1,0 (intercept) 0.997 0.998 1.036 1.037
β1,1 1.001 1.002
β1,2 1.008 1.008
β1,3 1.013 1.040
β1,4 0.998 1.006
β1,5 1.005 1.007
β1,6 1.000 1.014
β1,7 0.999 1.004
β1,8 1.003 1.033
β1,9 1.001 1.015
β1,10 1.007 1.048 1.003 1.017
β20 (temperature) 1.018 1.032 1.002 1.006
σ2 0.997 0.997
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Figure A3: Posterior mean of Y vs. observed Y in Example 1
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Figure A4: example 1, zoib-fixed

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 17

Parameter point upper bound
(95%)

β0,1 1.083 1.332
β1,1 1.004 1.035
β0,2 1.163 1.582
β1,2 1.008 1.100
σ2

1 0.997 0.997
σ2

2 1.036 1.165

Table A2: Potential scale reduction fac-
tors in Example 2
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Table A3: Posterior mean of Y vs. observed Y (example 2)

parameter β1,0 β1,1 β1,2 β1,3
point 1.018 1.005 1.000 0.997
upper limit 1.092 1.042 1.015 0.999
(95% CI )
parameter β1,4 β1,5 β1,6 η

point 0.997 1.006 0.997 1.068
upper limit 1.000 1.047 0.998 1.279
(95% CI )
parameter β2,0 β2,1 β2,2 β2,3
point 0.998 1.001 0.998 0.998
upper limit 1.000 1.001 0.999 1.004
(95% CI )
parameter β2,4 β2,5 β2,6 σ2

point 0.996 1.012 0.996 1.001
upper limit 0.997 1.012 0.999 1.020
(95% CI )

Table A4: Potential scale reduction fac-
tors in Example 3
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Table A5: Posterior mean of Y vs. observed Y (example2 )
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Figure A5: Trace and auto-correlation plots in the zoib-fixed model in example 1
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