
Mission Accomplished: An Introduction to Formal Methods in
Mobile Robot Motion Planning and Control

Hai Lin

Electrical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA

A new trend in the robotic motion planning literature is to use formal methods, like model checking, reactive synthesis and supervisory
control theory, to automatically design controllers that drive a mobile robot to accomplish some high level missions in a guaranteed
manner. This is also known as the correct-by-construction method. The high level missions are usually specified as temporal logics,
particularly as linear temporal logic formulas, due to their similarity to human natural languages. This paper provides a brief overview of
the recent developments in this newly emerged research area. A number of fundamental topics, such as temporal logic, model checking,
bisimulation quotient transition systems and reachability controller design are reviewed. Additionally, the key challenges and possible
future directions in this area are briefly discussed with references given for further reading.

Keywords: Mobile robots; symbolic motion planning; correct-by-construction; hybrid control; cyber-physical systems.

1. Introduction

The current design process for robotic systems, especially
in the high-level decision making and coordinations among
multiple robots, is still of trial and error nature [44]. Engi-
neers design a robotic system, and then test it in all con-
ceivable scenarios that could be mimicked. Once a bug was
found, the design is revised accordingly, and then the sys-
tem is tested again. This design and test cycle repeats until
no more errors were found and the engineer believes that
the robots are reliable enough. However, even after an ex-
tensive period of testing, it is very possible that some bugs
still remain undiscovered [47]. In addition, if a bug was
found at a very late stage in the design process, it could be
very costly to fix it as it may request an overhaul of the
whole design. Furthermore, should the application scenar-
ios change or new functions need to be added, we may have
to repeat this time-consuming and error-prone design
process. Besides these drawbacks, this trial and error de-
sign process is not suitable for some safety critical or
emergency response applications, such as searching and

removing mass destruction weapons [59] or cleaning-up in
a meltdown nuclear power plant area [8], where we do not
have a second chance and the consequences of errors are
definitely unacceptable. Hence, it is of great needs to have
formal design approaches to robotic system synthesis that
can guarantee the performance and correctness of the
designed robotic systems.

Motivated by these challenges, a recent trend in the
robotic motion planning and control is to use formal
methods, like model checking, reactive synthesis and
supervisory control theory, to automatically generate con-
trollers that, by construction, guarantee the robot to satisfy
high-level missions [2, 5, 17, 20]. As an example of these
high-level specifications, in a search and rescue mission,
certain regions may need to be searched in a particular
order and once a survivor was found, at least one robot will
stay for assistance and stream back the location and situ-
ation to the base station for the human task force. It is
nontrivial to convert these kinds of high-level missions into
a sequence of \go from A to B while avoiding C" type of
traditional motion planning primitives, but they can be
readily captured by temporal logic formulas. Then, the
design problem considered here can be generally stated as
follows: Given a temporal logic specification, design low-
level primitives, such as feedback controllers, coordination

Received 25 February 2014; Revised 29 March 2014; Accepted 1 April
2014; Published 21 April 2014. This paper was recommended for publi-
cation in its revised form by the editors-in-chief.
Email Address: hlin1@nd.edu

Unmanned Systems, Vol. 2, No. 2 (2014) 201–216
#.c World Scientific Publishing Company
DOI: 10.1142/S2301385014300029

201

http://dx.doi.org/10.1142/S2301385014300029

rules and communication protocols, for robots to accom-
plish the high-level mission. To distinguish from traditional
motion planning, this is known as symbolic motion plan-
ning in the literature, see e.g., [2, 5, 11, 18, 19, 41, 46, 58,
77] and the references therein.

The basic design procedure for symbolic motion plan-
ning consists of the following steps. First, a finite abstracted
model of the robotic system is obtained. Then, the design is
carried out in the discrete domain and uses methods like
model checking, reactive synthesis and/or supervisory
control theory to generate feasible runs consisting of
sequences of discrete (symbolic) states that satisfy the
temporal logic specifications in concern. Finally, the gener-
ated sequence of discrete states or symbols are used by the
continuous layer to construct continuous feedback control
laws to drive the robot (or physically feasible trajectories
for robots to follow). The critical step, also the most difficult
part, of symbolic motion planning is how to obtain an ab-
straction of the robotic dynamics and environment. The
abstracted finite model should be constructed in such a way
that once one can find a run in the abstracted model sat-
isfying the specification then there must exist correspond-
ing continuous trajectories for the original robotic system
satisfying the same specification. Most of research efforts in
the literature have been devoted to answering the ab-
straction problem, using simulation-, bisimulation- and ap-
proximate bisimulation-based abstraction [1, 5, 73]. Since
the temporal logic, abstracted model and discrete planning
are all in the discrete domain while the robot dynamics
follow continuous differential equations with physical con-
tinuous constraints, the controllers being designed must be
of hybrid nature [54]. The salient feature of symbolic mo-
tion planning methods is that they can guarantee the sat-
isfaction of temporal specifications provided that there exist
low-level primitive feedback controllers to implement the
actions requested by the hybrid controller.

This paper aims to provide a brief overview of the recent
developments in this newly emerged multi-disciplinary re-
search area. For such a purpose, the rest of paper is orga-
nized as follows. First, we formally state the symbolic
motion planning problem in Sec. 2, with a brief explanation
of the hierarchical control stack that is usually adopted in
symbolic motion planning design. Then, Sec. 3 gives a quick
review of some basic concepts like the labeled transition
system, simulation and bisimulation relations and bisimilar
quotient transition systems. The symbolic motion planning
problem is investigated in Secs. 4 and 5. In particular, Sec. 4
considers a simple case where the robot dynamics can be
modeled by a set of linear differential equations or ap-
proximated by a piecewise affine system. As an extension,
the symbolic motion planning with a more general nonlin-
ear dynamical model is discussed in Sec. 5 based on the
ideas of approximate bisimulation and interface design.

Finally, possible future directions, such as motion planning
in uncertain environments, relaxing the perfect sensing and
actuation assumptions, optimal symbolic control and multi-
robot coordination, together with their key challenges and
some promising approaches, are discussed in Sec. 6.

2. Symbolic Motion Planning Problem

We consider a robot that is modeled by the following con-
tinuous variable dynamical system § (dynamics model)

§ :
x
:ðtÞ ¼ f ðxðtÞ; uðtÞÞ;
yðtÞ ¼ gðxðtÞÞ;

�
ð1Þ

where xðtÞ 2 Rn is the state of the robot, uðtÞ 2 Rr is the
control input and yðtÞ 2 Rp is the observed output of the
robot such as its position, orientation and so on.

It is assumed that the initial condition x0 is restricted to
a certain region in the state space X0 � Rn. The goal is to
design a controller such that the output yðtÞ generated by
the closed-loop system satisfies a given high level temporal
specification. For example, one may request that the output
yðtÞ visits certain regions in the output (robot configura-
tion) space Rp with a specific order while avoiding some
forbidden regions in Rp, e.g., obstacles.

To capture such requirements formally, we adopt the
temporal logic over reals (RTL) [68] and define a set of
atomic propositions as Π ¼ f�0; �1; . . . ; �mg, which is a fi-
nite set of symbols that label these regions of interest.
Furthermore, the denotation ½½ � �� of each symbol is defined
as the region labeled by �, i.e., ½½�i�� � Rp for any �i in Π. The
atom �i is true if and only if yðtÞ is in ½½�i��. The symbol �0 is
reserved for initial conditions, yð0Þ 2 ½½�0��, and corre-
spondingly the state starts from xð0Þ 2 X0 � Rn. Here we
are more interested in deciding whether the robot is in
certain regions of interest than the exact position of the
robot per se. For example, in the study of collision avoid-
ance, we request the robot never visit the regions standing
for the obstacles or two robots are never within the same
region. It is also assumed that all these regions are given as
polytopes, which is rather standard in the motion planning
literature as the union of polytopes can be used to ap-
proximate the workspace of robots in an arbitrarily close
manner.

With these notations, the syntax of the propositional RTL
[68] can be formally introduced as below.

Definition 1. LetΠ be a finite set of atomic propositions, i.e.,
Π ¼ f�1; �2; . . . ; �ng, standing for the regions of interest. The
set of all well-formed propositional RTL are recursively
defined from predicates in Π according to the following rules

1. true, false, and �i are RTL formulas for all �i 2 Π;

202 H. Lin

2. if ’1 and ’2 are RTL formulas, then ’1 ^ ’2, ’1 _ ’2 and
:’1 are RTL formulas;

3. if ’1 and ’2 are RTL formulas, then ’1U’2 and ’1R’2

are RTL formulas

Formally, the semantics of RTL formulas are defined over
continuous time signals. Given a function y : Rþ ! Rr , we
define yjt to be the t time shift of y with definition yjtðsÞ ¼
yðsþ tÞ for all s 2 Rþ.

Definition 2. Let yðtÞ be a function y : Rþ ! Rr , and Π a
finite set of atomic propositions, i.e., Π ¼ f�1; �2; . . . ; �ng
with atomic mapping ½½ � ��. For t; s 2 Rþ, the semantics of an
RTL formula over Π can be defined as

1. ð y; ½½ � ��Þ � �i iff yð0Þ 2 ½½�i��,
2. ð y; ½½ � ��Þ � :p iff yð0Þ 62 ½½�i��,
3. ð y; ½½ � ��Þ � ’1 ^ ’2 if ð y; ½½ � ��Þ � ’1 and ð y; ½½ � ��Þ � ’2,
4. ð y; ½½ � ��Þ � ’1 _ ’2 if ð y; ½½ � ��Þ � ’1 or ð y; ½½ � ��Þ � ’2,
5. ð y; ½½ � ��Þ � ’1U’2 if there exists t � 0 such that ðyjt ;

½½ � ��Þ � ’2 and for all s with 0 � s � t we have
ð yjs; ½½ � ��Þ � ’1,

6. ð y; ½½ � ��Þ � ’1R’2 if for all t � 0 it is ð yjt; ½½ � ��Þ � ’2 or
there exists some s such that 0 � s � t and
ð yjs; ½½ � ��Þ � ’1.

Intuitively speaking, the formula ’1U’2 expresses the
property that over the trajectory yðtÞ, ’1 is true until ’2

becomes true. On the contrary, the release operator ’1R’2

means that ’2 should hold true and be released when ’1

becomes true. Furthermore, we can derive several addi-
tional temporal operators such as

. §’ ¼true U’ means that the sub-formula ’ eventually
becomes true for a trajectory yðtÞ,

. W’ ¼ :§:’ indicates that ’ always holds true for yðtÞ.

The following examples from [18] illustrate some typical
control specifications that can be formulated as temporal
logic formulas based on the atomic proposition set Π.

. Reachability while avoiding regions: The formula :ð�1 _
�2Þt�3 represents the requirement that the output fi-
nally reaches the region ½½�3�� while keeping away from
the regions ½½�1�� and ½½�2��;

. Sequencing: The formula §ð�1 ^ §ð�2 ^ §�3ÞÞ represents
the requirement that the output reaches the regions ½½�1��,
½½�2�� and ½½�3�� in order;

. Coverage: The formula §�1 ^ §�2 ^ §�3 represents the
requirement that the output eventually reaches all the
regions ½½�1��, ½½�2�� and ½½�3�� without any particular order;

. Recurrence (Liveness): The formula Wð§�1 ^ §�2 ^ §�3Þ
represents the requirement that the output reaches these
regions ½½�1��, ½½�2�� and ½½�3�� infinitely often.

More complicated specifications can be composed from
the basic specifications using the logic operators. Now the

temporal motion planning problem for robots can be stated
as follows:

Problem 1. Given the robot dynamics model § and an RTL
formula �, design control signals uðtÞ such that the
trajectories of the closed-loop system satisfy the formula �.

The difficulty lies in the fact that the specification is given
as discrete logic formulas, while the plant to be controlled
contains continuous-variable dynamics. To bridge the gap, a
hierarchical control structure consisting of a discrete plan-
ning layer on top of a continuous implementation layer is
usually adopted. The basic idea is to obtain an equivalent
finite abstractions of the continuous dynamics of robots
first, upon which a discrete synthesis- or searching-based
algorithm is performed on the discrete planning layer using
model checking, reactive synthesis or discrete event
supervisory control approaches. The design is with respect
to the temporal logic specification � and its output is a
sequence of regions (in symbols) to be visited by the robot
in order. Next, this sequence of regions is converted to a
hybrid controller (since the controller usually contains both
discrete transitions and continuous flows) to drive the robot
visiting these regions in order. Interested readers may refer
to [54] for a recent survey on hybrid dynamical systems.

The effectiveness of the abstraction-based method
depends on whether or not there exists an equivalent finite
state discrete abstracted model for the original robotic
continuous dynamic systems. The equivalence is in the
sense that once one can find a run in the abstracted model
satisfying the specification then there must exist corre-
sponding continuous trajectories for the original robotic
system satisfying the same specification. Therefore, signifi-
cant research efforts have been devoted to developing such
an equivalent abstract models, mainly using simulation-,
bisimulation- and approximate bisimulation-based abstrac-
tion, see e.g., [1, 5, 73]. In the next section, we will give a
brief review of the simulation and bisimulation relation on
transition systems.

3. Simulation, Bisimulation and Abstractions

Some basic concepts and notations on simulation and bisi-
mulation that are widely used in the symbolic motion
planning literature will be reviewed here. Here, we follow
the notations in [4]. Readers who are familiar with these
notations may simply skip this section.

3.1. Transition systems

Transition systems are graph models that describe the
evolution of the states under the action of transitions.

Mission Accomplished 203

Definition 3. A transition system T is a four tuple T ¼
ðS; S0;U;!Þ defined by

. A set of states S,

. A set of initial states S0 � S,

. A set of actions U,

. A transition relation !� S � U � S.

A transition system is called finite when the state set S
and the action set U contain only a finite number of ele-
ments. Clearly, a finite automaton can be cast as a transition
system with finite states. A transition system may have in-
finite number of states, and can be used to represent a large
class of dynamical systems, such as continuous control
systems and hybrid dynamical systems [54, 73]. The dy-
namical behavior of a transition system is conveniently
described by the strings of its state evolution. Formally, we
have the following definitions and notations.

Definition 4. A string � 2 S � (� 2 S!) is a run of transition
system T ¼ ðS; S0;U;!Þ if

1. �ð1Þ 2 S0,
2. there exists a string � 2 U � (� 2 U!) such that ð�ðiÞ;

�ðiÞ; �ðiþ 1ÞÞ 2!; for i ¼ 1; . . . ; j�j 	 1 ði � 1 for
� 2 U !Þ.

Note that S � stands for the set of all strings of finite
length with symbols from S, while S! stands for the set of all
strings of infinite length with symbols from S. The notation
j�j stands for the length of the run �, which potentially
contains infinite number of transitions, i.e., j�j 2 N [f!g.
Here N denotes the set of natural numbers and ! stands for
infinity. For i < j�j, the ith state of �, written as �ðiÞ, is the
state si reached after i transitions. A complete execution is a
run which is maximal, that is, which cannot be extended. It
is either infinite, or it ends in a state sn out of which no
transition is defined. If the second case happens, we call it a
deadlock.

Consider a transition system T ¼ ðS; S0;U;!Þ. For a
particular state s 2 S and action a 2 U, the set of successor
states of s by action a are given by postaðsÞ ¼ fs 0 2
Sjðs; a; s 0Þ 2!g. The successor states of s in T for all pos-
sible actions is postðsÞ ¼ [a2U postaðsÞ.

Actions can be seen as inputs, and we can also introduce
outputs for transition systems. Instead, we call them labels,
which associate the states of a transition system with
properties that hold true for the corresponding states. The
properties of interest are denoted as symbols pi, say
p1 ¼ \the machine is busy," p2 ¼ \the machine is broken"
and so on. The collection of such symbols (assumed to be
finite) forms a set, denoted as P ¼ fp1; p2; . . . ; g and called
an atomic proposition set. A labeled transition system is a
transition system with all its states being labeled with true
or false for atomic propositions in P.

Definition 5. A labeled transition system is a tuple ðT; lÞ,
where T ¼ ðS; S0;U;!Þ is a transition system and l : S !
2P (where 2P stands for the collection of all subsets of P) is
a label function that assigns each state s in T a subset of
predicates lðsÞ � P satisfied by the state s.

Given a finite run � of the transition system T, we can
define a trace generated from the labeled transition system
ðT; lÞ corresponding to the run � as a string � 2 ð2PÞ�,
where �ðiÞ ¼ lð�ðiÞÞ. The collection of all finite traces that
can be generated by the labeled transition system ðT; lÞ is
called the trace generated by ðT; lÞ, denoted as T ðT; lÞ. Note
that the above definitions can be extended to the case
where � is of infinite length. Then, � is an infinite trace as

defined above, i.e., � 2 ð2PÞ!, and the collection of all such
infinite length traces is called the !-trace generated by
ðT; lÞ, denoted as T!ðT; lÞ.

3.2. Simulation relation

In particular, we focus on abstraction-based approaches by
obtaining equivalent quotient transition systems that satisfy
the same temporal logics. Here the quotient is taken with
respect to simulation or bisimulation equivalences [61]
defined for labeled transition systems as below.

Definition 6. Let Ti ¼ ðSi; S 0
i ;!Þ with i ¼ 1; 2 be two

transition systems,a and li : Si ! 2P labels their states,
respectively. A relation R � S1 � S2 is said to be a simulation
relationship from labeled transition system ðT1; l1Þ to ðT2; l2Þ
if the following hold:

1. For any pair ðs1; s2Þ 2 R, their labels are the same, i.e.,
l1ðs1Þ ¼ l2ðs2Þ,

2. For any initial state s1 2 S 0
1, there exists s2 2 S 0

2 such
that ðs1; s2Þ 2 R,

3. For any pair ðs1; s2Þ 2 R, if s 01 2 postðs1Þ in T1 then there
exists s 02 2 S2 such that s 02 2 postðs2Þ in T2 and
ðs 01; s 02Þ 2 R.

Intuitively, a labeled transition system simulates another
system if, for every run in the simulated system, there is a
matching (w.r.t. labels) computation in the simulating sys-
tem. If there exists a simulation relationship R from labeled
transition system ðT1; l1Þ to ðT2; l2Þ, we also say that ðT1; l1Þ
is simulated by ðT2; l2Þ, or ðT2; l2Þ simulates ðT1; l1Þ, denoted
as ðT1; l1Þ
RðT2; l2Þ, since for any trace in ðT1; l1Þ one can
find a corresponding equivalent trace in ðT2; l2Þ. Hence, if
ðT1; l1Þ
RðT2; l2Þ, which also results T ðT1; l1Þ � T ðT2; l2Þ
and T!ðT1; l1Þ � T!ðT2; l2Þ.

aSince we adopt the label-based simulation relation and only concern the
existence of actions, it is possible to omit the definition of action sets Ui and
treat all actions equally.

204 H. Lin

Relation R is said to be bisimulation relation between
ðT1; l1Þ and ðT2; l2Þ if R is a simulation relation from ðT1; l1Þ
to ðT2; l2Þ and R	1 is a simulation relation from ðT2; l2Þ to
ðT1; l1Þ, i.e., ðT2; l2Þ
R	1ðT1; l1Þ. If such a bi-simulation re-
lation R exists between ðT1; l1Þ and ðT2; l2Þ, then we say that
ðT1; l1Þ is bisimilar to ðT2; l2Þ, denoted as ðT1; l1ÞffiR[R	1

ðT2; l2Þ. Usually, we only care about the existence of such an
R, so we usually omit R and simply write ðT1; l1Þ
 ðT2; l2Þ
or ðT1; l1Þ ffi ðT2; l2Þ. Since ðT1; l1Þ ffi ðT2; l2Þ implies both
ðT1; l1Þ
 ðT2; l2Þ and ðT2; l2Þ
 ðT1; l1Þ, so two bisimilar
labeled transition systems are trace equivalent, i.e., ðT1; l1Þ
ffi ðT2; l2Þ implies T ðT1; l1Þ ¼ T ðT2; l2Þ and T!ðT1; l1Þ ¼
T!ðT2; l2Þ.

3.3. Bisimulation quotient

To reduce the computational complexity of model checking,
we try to reduce the size of the state space of a transition
system by clustering all bisimilar equivalent states. For such
a purpose, we introduce self-bisimulation relation for a la-
beled transition system first.

Definition 7. Consider a labeled transition system ðT; lÞ
and a binary relationship R � S � S. The relation R is called
a self-bisimulation relation for ðT; lÞ if the following hold:

. 8 ðs1; s2Þ 2 R : lðs1Þ ¼ lðs2Þ.

. 8 s 01 2 postðs1Þ, 9 s 02 2 postðs2Þ with ðs 01; s 02Þ 2 R.

. 8 s 02 2 postðs2Þ, 9 s 01 2 postðs1Þ with ðs 01; s 02Þ 2 R.

States s1 and s2 are bisimilar denoted as s1 � s2 if there
exists such a binary relation R, defined in the above defi-
nition, in ðT; lÞ. The bisimulation relation defined above
forms an equivalence relation as it is reflexive, symmetric
and transitive. Since R is an equivalence relation on S, it
therefore induces a partition of the state set into a number
of equivalent classes S ¼

S
s2S ½s�R; where ½s�R is a collection

if all bisimilar states to s, namely ½s�R ¼ fs 0 2 S j ðs; s 0Þ 2 Rg.
It can be easily shown that for any s; s 0 2 S

. s 2 ½s�R,

. if s 0 2 ½s�R, then ½s�R ¼ ½s 0�R,

. if s 0 62 ½s�R, then ½s�R \ ½s 0�R ¼ ;,

. S ¼ [s2S ½s�R.

Hence, the bisimulation relation R does induce a partition of
the state set S. For simplicity, we denote such a partition as
S=R, which stands for the quotient space, i.e., the set con-
sisting of all equivalent classes. Based on the quotient space,
we can define a quotient transition system as below.

Definition 8. Given a labeled transition system ðT; lÞ and a
bisimulation relation R � S � S, the quotient transition
system can be defined as T=R ¼ ðS=R; S0=R;!RÞ where

S=R ¼ f½s�Rgs2S , the initial states

S0=R ¼ f½s�R 2 S=R : S0 \ ½s�R 6¼ ;g;

and for ½s1�R; ½s2�R 2 S=R, ð½s1�R; ½s2�RÞ 2 !R if and only if
there exist s1 2 ½s1�R and s2 2 ½s2�R such that ðs1; s2Þ 2!.
The new label map lR : S=R ! 2P is defined as
lRð½s�RÞ ¼ lðsÞ.

Note that since if s 0 2 ½s�R then lðs 0Þ ¼ lðsÞ by definition,
the new label map lR is well defined. Also, it can be checked
that there exists a relation on S � S=R that satisfies the
bisimulation relation definition. Particularly, we can choose
R � S � S=R with ðs 0; ½s�RÞ 2 R if and only if s 0 2 ½s�R. Then,
we can conclude that ðT; lÞffiR[R	1ðT=R; lRÞ, see e.g., [4, 12]
for more detailed discussions. Hence, ðT; lÞ ffi ðT=R; lRÞ. The
hope is that the quotient transition systems T=R has much
fewer number of states compared to the original transition
system T, so the model checking and synthesis problems
can be significantly simplified.

4. Motion Planning Under Affine Dynamics

Now, we are ready to study the symbolic motion planning
problem formulated in Sec. 2. We first consider the case
when the robot dynamics model §, described in Eq. (1), can
be approximated as an affine control system, i.e.,

x
:ðtÞ ¼ AxðtÞ þ aþ BuðtÞ;
yðtÞ ¼ CxðtÞ;

�
ð2Þ

where xðtÞ 2 Rn is the state of the system, uðtÞ 2 Rm is the
control input and yðtÞ 2 Rp is the observed output of the
system, while A 2 Rn�n, a 2 Rn, B 2 Rn�m and C 2 Rp�n are
state matrices. The results in this section are mainly based
on [27, 40], where it is assumed that all regions of interest
are bounded polyhedral sets.

4.1. Affine functions on simplices

A polyhedral set P is a subset of RN , described by a finite
number of linear inequalities. Namely, there exist K nonzero
vectors n1; . . . ; nK 2 RN and scalars �1; . . . ; �K 2 R, such
that

P ¼ fx 2 R
N j 8 i ¼ 1; . . . ;K : nT

i x � �ig: ð3Þ

Each linear inequality nT
i x � �i forms a half-space, so this

is called the half-space representation of a polyhedral set P.
Correspondingly, the hyperplane formed by nT

i x ¼ �i is
called a supporting hyperplane for P. A bounded polyhedral
set is called a polytope. A polytope can alternatively be

Mission Accomplished 205

characterized as the convex hull of a finite number of points,
v1; . . . ; vM 2 RN ,

P ¼ x 2 R
Njx ¼

XM
i¼1

�i vi;
XM
i¼1

�i ¼ 1; �i � 0

()
; ð4Þ

where v1; . . . ; vM are called vertices of the polytope P.
Equation (4) is called the vertex representation of a
polytope.

The half-space representation and the vertex represen-
tation for a polytope are equivalent and can be transformed
from one to the other [80]. Which definition should be
employed depends on what is more suitable for the prob-
lem at hand. The intersection of a polytope P with one of its
supporting hyperplanes

Fi ¼ fx 2 R
NjnT

i x ¼ �ig \ P ð5Þ

is called a facet of P, if the dimension of the intersection is
equal to N 	 1. The vector ni is the normal vector of the
facet Fi , ði ¼ 1; . . . ;KÞ, and, by convention, ni is of unit
length and always points out the polytope P. Also, the cor-
responding hyperplane nT

i x ¼ �i is called a bounding hy-
perplane for P. Later on, we assume that each facet of P
corresponds to exactly one ni, and vice versa. Namely, each
ni corresponds to a bounding hyperplane and is linearly
independent of other norm vectors.

The set of vertices of a polytope P is denoted by VðPÞ.
Given a vertex v 2 VðPÞ, we denote by FðvÞ the set of all
facets containing v. It can be shown that for a polytope there
are at least N þ 1 vertices, i.e., M � N þ 1. A polytope that
has exactly N þ 1 vertices is called a simplex in RN . Any
full dimensional polytope can be triangularized [50]. In
other words, for any full dimensional polytope P, there
exists full dimensional simplex S1; . . . ; SL such that: (1)
P ¼ [i¼1;2;...;LSi, (2) Si \ Sj is either empty or a common
facet of Si and Sj , for all i; j ¼ 1; . . . ; L with i 6¼ j. The set of
vertices of simplex Si is a subset of fv1; v2; . . . ; vMg for all
i ¼ 1; . . . ; L.

A reason for restricting polytopes is due to the fact that
an affine function's value inside a polytope P will be
uniquely determined by its values at the vertices of P. An
affine function f : RN ! Rr is of the form

f ðxÞ ¼ Ax þ b ð6Þ

for constant matrices A 2 Rr�N and vector b 2 Rr. Due to
convexity and linearity, it is easy to obtain:

Lemma 1. Let w 2 Rr and d 2 R. Then wTf ðxÞ > d every-
where in a polytope P, if and only if the inequality holds at all
the vertices of P, i.e., wTf ðviÞ > d for i ¼ 1; . . . ;N þ 1.

It is easy to see that the result remains valid if > is
replaced by �;¼; <;�. Also, the result remains valid if f is

restricted to a facet Fi . The following result tells us that
the function value of an affine function on polytope P is
completely determined by the values of f on the vertices of P.

Lemma 2 ([27]). Let P be a polytope in RN and f : RN !
Rr an affine function. The function value of x 2 P, f ðxÞ is
completely determined by the values of f on the vertices of P,
f ðviÞ ¼ gi, i ¼ 1; . . . ;M, i.e., x 2 P) f ðxÞ ¼

P
v2VðPÞ �vf ðvÞ;P

v2VðPÞ �v ¼ 1; �v � 0.

Moreover, f is unique. Assume not, and there is another
affine function f 0 : RN ! Rr satisfying f 0jVðPÞ ¼ g. Then,
consider f 	 f 0, which is affine and ðf 	 f 0ÞjVðPÞ ¼ g	 g ¼ 0.
It then follows from the previous lemma that f 	 f 0 is the
function identically zero and thus f ¼ f 0. In particular, we
can present an explicit reconstruction for the case of an
affine function on a simplex.

Lemma 3 ([27]). Let SN be a simplex in RN and f : RN !
Rr an affine function. The restriction of f to SN is a convex
combination of its values at the vertices, and is given by

f ðxÞ ¼ GW 	1 x
1

� �
; x 2 P; ð7Þ

where

G ¼ ½g1 � � � gNþ1�;

W ¼
v1 � � � vNþ1

1 � � � 1

� �

are r � ðN þ 1Þ and ðN þ 1Þ � ðN þ 1Þ real matrices,
respectively.

4.2. Two basic control problems

For the linear control system (2), it is assumed that all
the regions are given as polytopes with ½½�i�� ¼
fy 2 RpjnT

i y � gig, where ni 2 Rp and gi 2 R. Note that
yðtÞ 2 ½½�i�� holds true if and only if nT

i CxðtÞ � gi, which
corresponds to a polytope in the state space Pi ¼
fx 2 RnjnT

i Cx � gig.
We restrict our control uðtÞ to be in the form of an affine

function of state, i.e., uðtÞ ¼ kxðtÞ þ v, where k and v are to
be designed. The closed-loop dynamics will be

x
:ðtÞ ¼ ðAþ BkÞxðtÞ þ w; ð8Þ

which has an affine function on its right-hand side with
w ¼ Bv þ a. Our task is to design the controller u, i.e., k and
v, in such a way that all trajectories of the closed-loop
system starting from a polytope Pi can either all stay inside
Pi or all transit to a neighboring polytope Pj after a finite
period of time without intersecting with another region

206 H. Lin

during this transition process. The closed-loop system
becomes a piecewise affine system with polytopes as the
partition of the state space, which represents a special class
of a hybrid system.

For each polytope, the following two problems are
considered:

. Invariant Control Problem: The invariant control problem
for the linear control system (2) with respect to a poly-
tope P seeks an affine feedback control law u ¼ kx þ v
such that all trajectories for the closed-loop system
�ðtÞ starting from P will remain in P forever, i.e.,
�ð0Þ 2 P) �ðtÞ 2 P, 8t 2 Rþ.

. Control to Facet Problem: Consider the linear control
system (2) on a polytope P, and let F be a facet of P. The
control to facet problem is to determine whether there
exists an affine feedback control law u ¼ kx þ v such that
all trajectories for the closed-loop system starting from P
will leave P through F after a finite time � . Namely, there
exists a finite escape time � > 0 such that the following
hold

— �ðtÞ 2 P for 0 � t < �,
— �ð�Þ 2 F ,
— 9	 > 0 such that �ðtÞ 62 P [F for � < t < � þ 	.

Since the value of an affine function in a polytope can be
determined by its values at the vertices of the polytope, the
existence of such an affine feedback can be determined by
some linear inequalities evaluated at (a finite number of)
vertices of the polytope P. The following proposition char-
acterizes all affine vector fields for which the polytope is an
invariant.

Theorem 1 ([27, 40]). The invariant control problem for
the linear control system (2) with respect to a polytope P is
solvable provided that the following sets are non-empty

UPðviÞ ¼
\

F2FðviÞ
fu 2 R

mj
TFðAvi þ aþ BuÞ < 0g

for all vi 2 VðPÞ, where
F is the normal vector for the facet F.

It is a very intuitive condition, and basically requests the
existence of a control signal to make the vector field point
inside to the polytope P for all vertices. The conditions form
a collection of linear inequalities can be easily checked.
Moreover, when the sets are nonempty, a multi-affine con-
trol law u ¼ kx þ v can be constructed, with the control
value at vertex vi being any element in UPðviÞ. Similarly, the
control to facet problem also admits a simple solution. This
is illustrated in Fig. 1.

Theorem 2 ([27, 40]). Let P be a polytope in Rn with a
facet F and x

: ¼ Ax þ aþ Bu be a linear control system. The

control to facet problem admits a solution if the following
sets are nonempty

UPðviÞ ¼
\

G2FðviÞ
fu 2 R

mj
TGðAvi þ aþ BuÞ < 0g

for all vi 2 VðPÞ such that F 62 FðviÞ, and

UPðviÞ ¼
\

G2FðviÞ;G6¼F

u 2 R
m

TGðAvi þ aþ BuÞ < 0

TFðAvi þ aþ BuÞ > 0

�����
()

for all vi 2 VðPÞ such that F 2 FðviÞ.

Intuitively speaking, the sufficient conditions above force
the vector fields of the closed-loop system point inside to P
for all vertices except the vertices of the facet F. It therefore
guarantees that all trajectory starting from P will exit P
through the facet F within finite time durations. Hence, such
a control solves the \Control to Facet Problem." This is
illustrated in Fig. 1.

Once the above two control problems are solved, we can
deduce a finite labeled transition system that is bisimilar to
the closed-loop continuous system (seen as an infinite state
transition system with label mapping consistent with ½½ � ��).
The construction of the finite abstraction is conceptually
simple. Note that the specification regions ½½�i�� for the out-
put yðtÞ are assumed to be polytopes and mutually exclu-
sive and only share facets if adjacent. Correspondingly,
½½�i�� will imply a collection of polyhedrons in Rn, denoted as
Pi. All states in Pi are labeled with �i for consistency. The
collection of all such Pi forms the set of discrete states,
while the initial state is the polytope containing x0, i.e.,
x0 2 P0. There is a transition from Pi to Pj , i.e., ðPi; PjÞ 2 !P

(assume i 6¼ j), if they share a facet F and the control to the
facet F is solvable for Pi. There is a self-loop transition for a
polytope Pi, i.e., ðPi; PiÞ 2 !P , if the invariant control
problem is feasible for the polytope Pi. Hence, we obtain a
transition system TP ¼ ðfPig; fP0g;!PÞ, which has finite
states. The symbol �i is then used to label the discrete state

(a) (b)

Fig. 1. Illustration of the (a) control to facet problem and (b)
invariant control problem [18].

Mission Accomplished 207

Pi. It is not difficult to see that the deduced labeled transition
system is bisimilar to the continuous control system (2).
Actually, the relation R � fPig � Rn, defined by ðPi; xÞ 2 R if
x 2 Pi, together with its reverse, forms a bisimulation rela-
tion between TP and (2).

4.3. Discrete motion planning

After obtaining the finite abstraction model TP , one can
apply model checking methods [4,12] or supervisory con-
trol techniques [9,67] to design a sequence of region tran-
sitions such that the required RTL specifications are
satisfied. Due to bisimulation relation between the linear
control system and the abstracted model, the sequence of
discrete region transitions can be mimicked by continuous
trajectories xðtÞ, i.e., there exist continuous control signals
to drive the output yðtÞ so to satisfy the RTL specifications.
Furthermore, continuous control signals can be designed
based on Theorems 1 and 2. For example, if a self-loop
transition for region �i occurs, then the invariant control
law for region Pi can be designed based on results in The-
orem 1. On the other hand, if there is a transition from
region �i to �j , the control law proposed in Theorem 2 can
be adopted to achieve the region transition.

In particular, we give some details on the model check-
ing-based methods in this subsection. The main idea is to
reduce the model checking problem to an inclusion problem
between automata [74]. In particular, Büchi automata are
employed.

Definition 9 (Büchi Automaton). A Büchi automaton B
is an automaton ðQ;Q0;§; �; FÞ, where F � Q is a set of final
states. A string � 2 Q! is a run of B if there exists � 2 §!

such that

1. �ð1Þ 2 Q0,
2. �ðiþ 1Þ 2 �ð�ðiÞ; �ðiÞÞ, for all i 2 N, and
3. there exists infinitely many j 2 N such that �ð jÞ 2 F .

The language recognized or accepted by B is the collection
of all such �, called !-language and denoted by L!ðBÞ.

To do model checking based on automata theory, we first
convert the labeled transition system ðT; lÞ as a Büchi au-
tomaton BT , such that the languages accepted by the Büchi
automaton BT , denoted as L!ðBTÞ, coincide with the set of
!-traces generated from ðT; lÞ, i.e., L!ðBTÞ ¼ T!ðT; lÞ. The
conversion is very straightforward and can be described as
follows.

Given a labeled transition system ðT; lÞ, with T ¼
ðQ;Q0;E;!Þ and l : Q ! 2P , it can be transformed into a
Büchi automaton BT ¼ ðQ [ftg; ftg;§; �;Q [ftgÞ, where

. § ¼ 2P

. for any q 2 Q, q 0 2 �ðq; �Þ if and only if 9 e 2 E such that
ðq; e; q 0Þ 2! and � ¼ lðqÞ. In addition, q 2 �ðt; �Þ iff q 2
Q0 and � ¼ lðqÞ.

Next, the RTL specification ’ (seen as a subclass of linear
temporal logic (LTL) without the next operator) is trans-
lated into an equivalent Büchi automaton, denoted as B’.
The equivalence is in the sense that L!ðB’Þ is exactly the set
of paths satisfying the formula ’, that is � � ’ if and only if
� 2 L!ðB’Þ. The basic idea of the translation is to use the
collections of all sub-formulas as the state of the Büchi
automaton, and the state should contain exactly those sub-
formulas that hold true for all runs starting from this state.
This translation process is well investigated in the com-
puter science literature and there exist free software tools
to automate the process, see e.g., [23]. However, the
obtained Büchi automaton could be very large in the sense
that the size of its states could be of an exponential growth
(actually double exponential) compared with the length of
the formula.

After obtaining BT and B’, the next step is to build a
Büchi automaton B such that L!ðBÞ ¼ L!ðB’Þ \ L!ðBTÞ,
and then check whether the Büchi automaton B has any
accepted runs. To find the intersection of Büchi automata
B1 ¼ ðQ1;Q

0
1, §; �1; F1Þ and B2 ¼ ðQ2;Q

0
2; §; �2; F2Þ, we

construct B ¼ ðQ1 � Q2 � f0; 1;2g; Q0
1 � Q0

2 � f0g;§; �;
Q1 � Q2 � f2gÞ. We have ½q 0

1; q
0
2; j� 2 �ð½q1; q2; i�; �Þ if

q 0
1 2 �1ðq1; �Þ, q 0

2 2 �2ðq2; �Þ, and the third component is
affected by teh accepting conditions of B1 and B2

j ¼

1 if i ¼ 0 and q 0
1 2 F1;

2 if i ¼ 1 and q 0
2 2 F2;

0 if i ¼ 2;

i otherwise:

8>>><
>>>:

The third component is responsible for guaranteeing that
accepting states from both B1 and B2 appear infinitely often.
The third component is initially 0. It changes from 0 to 1
when an accepting state of B1 is seen. It then changes to 2
from 1 when the accepting state of B2 is visited, and, in the
next state, it returns back to 0. It can be seen that B accepts
exactly infinitely many states from F1 and infinite many
states from F1 occur. A simpler intersection is obtained
when all of the states of one of the automata are accepting.
Assume that all the state of B1 is accepting while the
accepting state set of B2 is F2. The intersection of B1 and B2

can be obtained as B3 ¼ ðQ1 � Q2;Q
0
1 � Q0

2;§; �;Q1 � F2Þ.
Moreover ½q 0

1; q
0
2� 2 �ð½q1; q2�; �Þ if and only if q 0

1 2 �1ðq1; �Þ
and q 0

2 2 �2ðq2; �Þ, see e.g., [4, 12].
Should the !-language of the intersection Büchi autom-

aton B be nonempty, its corresponding run will be accepted
by both BT and B’. It implies that the run can be imple-
mented in the transition system T and satisfies the

208 H. Lin

specification ’. So a solution to the motion planning prob-
lem can be found as an accepting run in the Büchi autom-
aton B. For such a purpose, we first look for a strongly
connected component (SCC) in the graphical representation
of B. If at least one of the states in the SCC containing a
marked state in B, and is reachable from the initial state of B
(within a finite number of transitions), then we find an
accepted run of B. Note that if the !-language accepted by a
Büchi automaton B is not empty, then one can always find
such a SCC in its graphical representation. In addition, the
identification of SCC and the construction of a feasible run
in the Büchi automaton B can be efficiently realized. Actu-
ally, the Breadth First Search (BFS) [52] can be used over
the graphical representation of B to find the all shortest
paths from the initial state to the marked states of B. Then,
from a reachable marked state qa, a new BFS is performed
to find the shortest path that leads back to qa.

Besides model checking-based algorithms, the design in
the discrete domain can also be based on the discrete event
system supervisory control theory [66] or reactive synthe-
sis approaches [63]. The supervisory control theory was
developed by Ramadge and Wonham in the 1980's [66, 67],
and has seen significant growth in 1990's [9]. The basic idea
of discrete event supervisory control is to restrict the
happening of some events in the plant (modeled as a finite
automaton) such that the closed-loop system respects a
given specification (usually given as a regular or !-regular
language). Not all events can be disabled, and the events
that can be disabled are called controllable events. To de-
rive the existence condition of such a supervisor to enforce
the specification, the controllability and observability con-
ditions of the specification languages are proposed. Fur-
thermore, when the specifications fail to satisfy the
existence conditions, algorithms to compute the sub-lan-
guages of the specification that is controllable and/or ob-
servable were proposed in the literature. Interested readers
may refer to [9, 66] for more details and more advanced
topics such as control under partial observations, modular
and decentralized supervisory control. The application of
supervisory control in the symbolic motion planning can be
found in the work [38, 39], where conic partition of the fly-
zone of unmanned helicopters was considered and finite
automata models were obtained.

As a closely related field, the supervisory control of hy-
brid systems using abstracted models has been advocated
in the literature since early 1990's, see e.g., [14, 43, 53, 65]
and the references therein. Early work in the area of hybrid
supervisory control, e.g., [14, 43, 65], mainly performed the
supervisor synthesis with respect to regular language spe-
cifications based on language equivalent or approximating
quotient systems. However, language equivalence does not
guarantee branching logic specifications, so we adopt a

stronger equivalence condition [4, 12], namely bisimulation,
instead.

5. Nonlinear Control Dynamics

So far, we have considered special cases when the contin-
uous dynamics are linear control systems. Now we turn to
consider the case when a robot dynamic model is given as a
general nonlinear control system

§ :
x
:ðtÞ ¼ f ðxðtÞ; uðtÞÞ;
yðtÞ ¼ gðxðtÞÞ;

�
ð9Þ

where xðtÞ 2 Rn is the state of the system, uðtÞ 2 U � Rr is
the control input and yðtÞ 2 Rp is the observed output of
the system.

Once again, the goal is to design a controller such that
the output yðtÞ generated from the closed-loop system
satisfies a given temporal logic specification �. It is also
assumed that � is built from atomic propositions, Π ¼
f�0; �1; . . . ; �mg, where each ½½�i�� stands for a region in
concern. Also, it is assumed that the region ½½�i�� is bounded
and convex.

The development here follows the results in [18], and
the basic idea is to introduce a simpler linear model in Rp,
for which we design a hybrid controller to achieve a mod-
ified version of the specification �. Then, a controller is
designed for the original nonlinear system to keep its tra-
jectory always within a neighborhood of the trajectory from
the designed linear systems provided that their initial
conditions are close enough. Note that the modification on
the specification � is made in such a way that once the
trajectories are close enough to a trajectory satisfying the
modified version of �, then the original specification � holds
true for all these nearby trajectories. For such a purpose, we
under-approximate the region ½½�i�� using a polytope when it
needs to be reached by yðtÞ, otherwise over-approximate it
using another polytope. Based on these approximations, we
introduce new atomic propositions, ~�i, and construct a new
version of the specification �, called ~�. Then, based on the
previous section results of controlling a linear control sys-
tem over polytopes, we can design controllers and suc-
cessful runs for proper initial conditions. Finally, we design
controllers for the nonlinear system such that its output
yðtÞ tracks the trajectory of the closed-loop linear system
with specified bounded errors. Then, the resulting output
trajectory yðtÞ is guaranteed to satisfy the initial user
specification.

Next, we introduce briefly the tracking problem and
modifications on the temporal logic specifications. The basic

Mission Accomplished 209

idea is first to approximate the nonlinear control system (9)
as a linear control system:

§ 0 : z
:ðtÞ ¼ AzðtÞ þ BvðtÞ; zðtÞ 2 R

p; z0 2 ½½�0��; v 2 V

ð10Þ

through the design of an interface.
We would like the linear control system approximates

the trajectories of the nonlinear control system (9) in the
following sense.

Definition 10 ([24]). A relation W � Rp � Rn is an
approximate simulation relation of precision � of § 0 by §
if for all ðz0; x0Þ 2 W ,

1. k z0 	 gðx0Þ k� �
2. For all state trajectories zðtÞ of § 0 such that zð0Þ ¼ z0

there exists a state trajectory xðtÞ of § such that xð0Þ ¼
x0 and satisfying ðzðtÞ; xðtÞÞ 2 W for all t � 0.

An interface associated with the approximation simula-
tion relation W allows us to choose the control inputs for
the nonlinear control system (9) so that the states in the
linear control system (10) and the states of the nonlinear
control system (9) remain in W .

Definition 11 ([18]). A continuous function uW : V �
W ! U is an interface associated with the approximate
simulation relation W , if for all ðz0; x0Þ 2 W , for all
trajectories zðtÞ of § 0 associated to input vðtÞ and such
that zð0Þ ¼ z0, the trajectory of § given by

x
:ðtÞ ¼ f ðxðtÞ; uWðvðtÞ; zðtÞ; xðtÞÞÞ; xð0Þ ¼ x0; ð11Þ

satisfies for all t � 0, ðzðtÞ; xðtÞÞ 2 W .

It is clear from the definitions that interconnecting the
linear control system (10) and the nonlinear control sys-
tem (9) through the interface uW

x
:ðtÞ ¼ f ðxðtÞ; uWðvðtÞ; zðtÞ; xðtÞÞÞ; xð0Þ ¼ x0;

yðtÞ ¼ gðxðtÞÞ

�

satisfies for all t � 0, kyðtÞ 	 zðtÞk� � provided kgðx0Þ	
z0k� �.

The approximate simulation relation can be constructed
by the level sets of a simulation function, which is a positive
function bounding the distance between the observations
and nonincreasing under parallel evolution of the systems.

Definition 12 ([24]). Let V : Rp � Rn ! Rþ be a
continuous and piecewise differentiable function. Let
uV : V � Rp � Rn ! Rp be a continuous function. The
function V is a simulation function of § 0 by §, and uV is
an associated interface if for all ðz; xÞ 2 Rp � Rn,

Vðz; xÞ �kz	 gðxÞk2; ð12Þ

sup
v2V

@Vðz; xÞ
@z

ðAx þ BvÞ þ @Vðz; xÞ
@x

f ðx; uVðv; z; xÞÞ
� �

� 0:

ð13Þ

Then, the approximate simulation relation can be de-
fined as level sets of the simulation function.

Theorem 3 ([18, 24]). Let the relation W � Rp � Rn be
given by

W ¼ fðz; xÞjVðz; xÞ � �2g: ð14Þ

If for all v 2 V , for all ðz; xÞ 2 W , uVðv; z; xÞ 2 U, then W is
an approximate simulation relation of precision � of § 0 by §
and uW : V �W ! U given by uWðv; z; xÞ ¼ uVðv; z; xÞ is an
associated interface.

Usually it is not easy to find such a simulation function
except in some special cases. Also, the arguments used by
the simulation function is similar to Lyapunov functions, so
it is usually very conservative.

In our setup, an RTL formula � is provided as a con-
troller specification for the original nonlinear control sys-
tem, while we need to deduce a new RTL formula for the
auxiliary linear system such that once a trajectory satisfies
the modified specification all neighboring trajectories will
satisfy the original specification �. Hence, we introduce the
notation of �-contraction so as to capture the robustness of
satisfaction for a formula.

Definition 13 ([18]). Given a radius � 2 Rþ [fþ1g and a
point � in a normed space A, the �-ball centered at � is
defined as B�ð�Þ ¼ f� 2 Aj k �	 � k� �g. If ¡ � A, then

C�ð¡Þ ¼ f� 2 AjB�ð�Þ � ¡g

is the �-contraction and B�ð¡Þ ¼ f� 2 AjB�ð�Þ \ ¡ 6¼ ;g is
the �-expansion.

Now, we define a new set of atomic propositions

~Π ¼ f�� j� ¼ � or :� for � 2 Πg:

Next, we describe how to translate an RTL � on Π into a
new RTL, denoted as robð�Þ, on ~Π. First, we write � into the
Negation Normal Form (NNF). Second, replace the occur-
rence of atomic proposition � and :� with �� and �:�, re-
spectively. Third, we define a new atomic map ½½ � ��� as
follows:

8 � 2 ~Π; ½½���� ¼
C�ð½½���cÞ if � ¼ �:�;

C�ð½½���Þ if � ¼ �:�;

�
ð15Þ

where � 2 Rþ is a given positive scalar, and ½½���c stands for
the complement of the set ½½���.

Intuitively, it means that we expand the region that yðtÞ
must avoid and �-contract the region that it needs to reach.
This process is illustrated in Fig. 2. The following result tells

210 H. Lin

us that if the trajectory satisfies the �-robust specification,
then any other trajectories that remain �-close to the initial
one will satisfy �.

Theorem 4 ([18]). Consider a formula � 2 ©Π, which is
built on a set of atoms Π, a map ½½ � �� : Π ! PðRpÞ, and a
number � 2 Rþ, then for all functions yðtÞ and zðtÞ from Rþ

to Rp such that for all t � 0, k zðtÞ 	 yðtÞ k� �, it holds that
ðz; ½½ � ���Þ � robð�Þ) ðy; ½½ � ��Þ � �:

Then, one can design a hybrid controller for the linear
control system to satisfy robð�Þ as introduced in Sec. 4,
i.e., the closed-loop trajectory zðtÞ satisfies robð�Þ. Once
this is done, the remaining task is to design the interface
so that the trajectory yðtÞ always stays in the � neighbor-
hood of zðtÞ.

6. New Directions and Challenges

In this section, we give a brief discussion on some recent
developments, possible trends and key challenges in the
theoretical research for the symbolic motion planning
problem.

6.1. Uncertain environments

In the developments so far, it is all assumed that the envi-
ronment is static and we have full knowledge of the work-
space in the form of an accuratemapwith known locations of

obstacles. However, it is not always the case in real appli-
cations. In most real scenarios, we may only have partial
knowledge of the environment, and the environment may be
dynamic as the obstaclesmaymove around and certain paths
may become blocked. For instance, in an automated ware-
house application, an aisle may be unexpectedly blocked by a
box fallen down from the shelf so that the aisle become im-
passable for robots. Similarly, a door could be closed when
the robot is trying to pass through. Once these happen, the
robot needs to update its knowledge and replan accordingly.

To handle uncertain environments, sensor-based tem-
poral-logic-motion planning was proposed in [45] where
the robot is sensing the environment and performs syn-
thesis with respect to a class of admissible environments. In
particular, the specifications considered in [45] have the
form of ’e) ’s, which is a fragment of LTL formulas and
known as generalized reactivity(1) [GR(1)] formulas [62].
Here, the sub-formula ’e stands for assumptions on the
sensor readings about the environment and ’s describes
the desired behave of the robot. The specification is true if
either ’s holds true or ’e is false. It means that the speci-
fication is satisfied if either the robot behave as expected
or the environment is not admissible, namely ’e is false.
Hence, ’e characterizes the admissible environments and is
evaluated by the readings from the robot sensors. During
the runtime, the robot keeps sensing the environment and
synthesizes controllers if the environment is admissible. It
is therefore called a reactive task as the robot reacts to
possibly changing environments, and the performance is
guaranteed provided that the environments are admissible.

Fig. 2. An illustration of the RTL translation process. Three regions need to be visited, �0, �2 and �4, are shrunken, while the regions need
to be avoided, �1 �3 and �5, are expanded.

Mission Accomplished 211

Another advantage of restricting to GR(1) formulas is
due to the existence of efficient algorithms based on tem-
poral logic games to construct an equivalent Büchi autom-
aton for a given GR(1) formula [62]. The construction
algorithm is of Oðn3Þ polynomial time complexity, where n
is the size of the state space. Each state in this framework
corresponds to an allowable truth assignment for the set of
sensor and robot propositions (describing the robot sensor
reading and actuation effects). Compared with general LTL,
it represents a huge computational improvement as creat-
ing such an automaton for general LTL formulas is proven
to be doubly exponential in the size of the formula, see e.g.,
[4]. However, the state space of a reactive task formula
tends to be large as it requests many sensor and robot
propositions to describe all possible admissible environ-
ments and the corresponding robot behaviors. So, formu-
lating a reactive synthesis task itself could be difficult for
human designers [45]. To facilitate the design process, a
software tool called LTLMop was developed in [22], where
structured English and LTL are used to write high level
reactive task specifications.

A recent trend to handle environmental uncertainties
relies on an iterative planning approach, see e.g., [3, 57, 60,
70]. The basic idea is to allow the robot to explore the
uncertain environment using its sensors, and dynamically
adjust/refine its abstraction of the workspace upon which a
controller is re-synthesized once new obstacles or new
regions were found. The iterative planning methods are
more natural and suitable to deal with uncertain environ-
ments as they do not require a full characterization of the
admissible environments.

6.2. Imperfect sensing or actuation

Besides uncertain environments, another type of uncer-
tainties that commonly exists is due to the imperfect sens-
ing or actuation from robots. The main concern here is
whether the assumptions on the perfect sensing and
actuations would cost us the guarantee of the performance.
To address this concern, the authors in [31] relaxed the
assumption of perfect sensing, and investigated the effect of
sensor errors on the behavior of the robot. In particular, the
sensor errors were characterized by a set of transition
probabilities defining the probability distributions of the
next sensor value given the next environment values and
the current proposition values of the sensors and the robot,
respectively. Under this framework, a discrete-time Mar-
kovian chain (DTMC) can be constructed to describe the
behavior of the robot under imperfect sensing. Then, the
probabilistic model-checking techniques [29] can be ap-
plied to the DTMC model to calculate the probability with
which the controller satisfies a set of temporal logic speci-
fications. The method proposed in [31] is therefore more of

performance assessment, but the calculated probability may
help to guide the redesign process.

On the other hand, the symbolic motion planning prob-
lem under imperfect actuations was considered in [49],
where the outcome of the low-level motion controllers was
treated in a probabilistic fashion. In particular, the authors of
[49] considered the case when a robot moves in a parti-
tioned environment by applying a given set of motion pri-
mitives that are predesigned (like we did in Sec. 4) and steer
the robot between adjacent regions. However, due to im-
perfect actuations, the robot may end in other adjacent
regions with some probabilities. It is assumed that the
probabilities of these transitions are known and the robot
can determine its current region precisely. Based on these
assumptions, the motion of the robot was modeled as a
Markov decision process (MDP) and the motion specifica-
tion was formulated as probabilistic computation tree logic
(PCTL). Hence, the symbolic motion planning problem under
imperfect actuations was converted to a probabilistic model
checking problem, for which there exist efficient algorithms
to calculate the maximum probability or the minimum cost
of satisfaction and a control strategy that achieves this
probability or cost, see e.g., [4]. In addition, there exist free
software tools implementing the probabilistic model
checking algorithms, see e.g., the PRISM [48] tool.

6.3. Optimality

Usually, the solutions to a temporal logic satisfaction
problem are not unique. On the other hand, typical robotic
applications not only request a completion of the task but
also need to do so in an efficient way. Efficiency could mean
the shortest total travel length, minimum cost for robot
deployments or maximum probability of success. Hence, a
recent trend in the symbolic motion planning literature is to
combine optimal control and optimization techniques with
formal synthesis. Since the satisfactory runs for a temporal
logic are usually of infinite length, it is not trivial to assign
costs to a particular run. Accumulative, average, weight
average, and expected average costs for transitions or be-
tween two consecutive satisfactions are all considered in
the literature, see e.g., [71, 72, 75].

To distinguish different runs, the authors in [71] modeled
the robot moving in a partitioned environment as a weighted
transition systems, and then developed an off-line control
strategy minimizing the maximum cost between two con-
secutive visits to a given set of states that must be consis-
tently visited. The solutionwas obtained by a modified graph
algorithm that searches for a run corresponding to the op-
timal robot path in the product automaton of the robot
weighted transition system model and a Büchi automaton
obtained from the given LTL specification. If the robot and its
environment are modeled as a MDP, the optimality can be

212 H. Lin

naturally considered as the maximum probability or the
minimum cost of satisfaction, and ready results based on
dynamic programming exist in the literature. In [16], the
authors synthesized a control policy such that the MDP
satisfies the given specification almost surely, if such a policy
exists. The control strategies synthesis for MDP so to mini-
mize the expected average cost between two consecutive
satisfactions of a desired LTL property was considered in
[72] by using results from the game theory [10].

Inspired from [76], a receding horizon control strategy
was used in [15] to maximize the collected reward while
satisfying the high level task specification. At each time step,
a local collected rewards with time-varying rewards asso-
ciated with states of the system is optimized over a finite
horizon, and the immediate optimal control is applied. A
software tool TuLip [78] has been developed to implement
the receding horizon temporal logic synthesis. The adoption
of the receding horizon control scheme is appealing as it
helps to reduce the computational complexity [76, 77], as
the state explosion problem is a well-documented challenge
in the formal verification and synthesis literature. However,
the receding horizon control scheme usually cannot guar-
antee the completeness or global optimality. In other words,
the receding horizon-based synthesis may fail to find a
satisfactory run even when such feasible solutions exist.
How to guarantee the completeness and global optimality of
the receding horizon-based controller design is still an on-
going research question.

As a generalization of the vehicle routing problem, the
authors in [34] considered vehicle routing with metric
temporal-logic specifications with the goal to minimize a
cost function of the vehicle paths (such as total distance
traveled). The basic idea is to convert the temporal speci-
fications into a set of constraints suitable to a Mixed-Integer
Linear Programming (MILP) formulation. Solving the
resulting MILP provides an optimal plan that satisfies the
given mission specification.

6.4. Multi-robot systems

Most of the results reviewed so far were developed for a
single robot motion planning. Their extensions to the multi-
robot case [30, 42] are nontrivial. One possible way is to
compose all transition systems or MDP models for indi-
vidual robots together to obtain a centralized model, upon
which the product automaton with the specifications can be
constructed and searching algorithms can be performed.
After a specification satisfying run is synthesized centrally,
it is then projected to each individual robots. This idea is
pursued by the majority of existing work, see e.g., [11, 41,
58, 64, 79]. However, the centralized design suffers from the
state explosion problem as the number of states in a

composition system is usually huge. In addition, the cen-
tralized design lacks flexibility and is difficult to adjust if the
task changes or the team needs to reconfigure (due to a
failure in one of the team members). Another method for
the multi-robot system is to treat other robots as part of the
environment and design in a reactive fashion [45]. However,
the reactive approaches cannot handle the cooperative
tasks that need tight coordinations or joint decision making
between robots. In addition, the reactive approaches need
to specify all possible behaviors of other robots as part of
admissible environments, which is nontrivial and could
significantly increase the state space of the reactive task
formula. Hence, both the centralized design and the reactive
methods are difficult to scale-up for large number of robots.

In a recent work [36], a \divide-and-conquer" approach
to the multi-robot coordination design was proposed. The
basic idea is to first decompose the team (global) specifi-
cation into subtasks for each individual robots, and a local
supervisor is then synthesized separately for each agent to
fulfill these subtasks. The key step is the task decomposi-
tion, and the decomposition is not arbitrary as it requests
that the satisfaction of decomposed subtasks by all indi-
vidual robots will imply the accomplishment of the team
specification. In particular, [36] studied the cooperative
tasking problems for two agents and then generalized to
arbitrarily finite number of agents with a necessary and
sufficient condition under which a deterministic task au-
tomaton is decomposable with respect to parallel compo-
sition and natural projections into local event sets in the
sense that the task automaton is bisimilar to the parallel
composition of its natural projections. The authors then
extended their work to the case of fault-tolerant cooperative
tasking in [35] and dealt with the robustness issues of the
proposed top-down design approach with respect to event
failures in the multi-agent systems, and necessary and
sufficient conditions characterized by event passivity were
proposed on failed events under which a decomposable
global task can still be accomplished successfully. The top-
down design approach was implemented to the coordina-
tion control of unmanned helicopters in [37, 39] using conic
partitions of the fly zone.

7. Concluding Remarks

This paper gives an overview of the recent developments in
the symbolic motion planning for robots to satisfy high level
temporal logic specifications. This is a very ambitious goal
as the filed is very dynamic with a wide spectrum of
approaches and applications ranging from computer sci-
ence, robotics and control theory. It is highly possible that
we have missed important results in spite of our best
efforts. If this has happened, we do apologize.

Mission Accomplished 213

The reachability control on simplex for linear and affine
dynamics follows the work in [27]. The concept of ap-
proximate bisimulation was proposed in [25]. Our treat-
ment on the synthesis of hybrid controllers for nonlinear
systems mainly follows the results in [26]. Although we only
considered the symbolic control for continuous control
systems, the extension of the idea to the cases of hybrid
systems is not difficult provided that the regions in concern,
such as invariant sets and guard sets, are all assumed to be
polyhedrons. For example, the reachability and control
problems for hybrid systems with piecewise affine dynam-
ics defined on simplices were considered in [28] using the
techniques discussed in Sec. 4. Piecewise affine systems are
also called piecewise linear systems, and have been widely
used in the study of circuits, see e.g., [51], since they can
approximate nonlinear dynamics with arbitrary accuracy
[55]. There also exist efficient computational techniques for
the identification of piecewise affine models from input–
output data, such as clustering-based methods [21], mixed-
integer programming [69], and Bayesian methods [32].

Although we mainly emphasized the feedback controller-
based approaches, there are other methods developed to
design the low level controllers, such as the vector fields
blending [56], composition of local potential functions [13]
and sampling-based approaches [6, 7, 33]. These methods
are intuitive to use and also can handle complex dynamics
and environments.

Acknowledgment

The financial supports of NSF-CNS-1239222 and NSF-CA-
REER-1253488 for this work are greatly acknowledged.

References
[1] R. Alur, T. Henzinger, G. Lafferriere and G. J. Pappas, Discrete abstrac-

tions of hybrid systems, in Proc. IEEE: Special Issue on Hybrid Systems,
Vol. 88, ed. P. J. Antsaklis (IEEE Press, 2000), pp. 971–984.

[2] M. Antoniotti and B. Mishra, Discrete event models þ temporal logic
¼ supervisory controller: Automatic synthesis of locomotion con-
trollers, in 1995 IEEE Int. Conf. Robotics and Automation, 1995. Proc.,
Vol. 2 (IEEE, 1995), pp. 1441–1446.

[3] A. I. Ayala, S. B. Andersson and C. Belta, Temporal logic motion
planning in unknown environments, in 2013 IEEE/RSJ Int. Conf. In-
telligent Robots and Systems (IROS) (IEEE, 2013), pp. 5279–5284.

[4] C. Baier and J. P. Katoen, Principles of Model Checking (MIT Press,
Cambridge, 2008).

[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins and G. J. Pap-
pas, Symbolic planning and control of robot motion, IEEE Robot.
Autom. Mag. 14(1) (2007) 61–70.

[6] A. Bhatia, L. E. Kavraki and M. Y. Vardi, Sampling-based motion
planning with temporal goals, in 2010 IEEE Int. Conf. Robotics and
Automation (ICRA) (IEEE, 2010), pp. 2689–2696.

[7] A. Bhatia, M. R. Maly, E. E. Kavraki and M. Y. Vardi, Motion planning
with complex goals, IEEE Robot. Autom. Mag. 18(3) (2011) 55–64.

[8] R. Bogue, Robots in the nuclear industry: A review of technologies
and applications, Ind. Robot 38(2) (2011) 113–118.

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd edn. (Springer-Verlag, 2008).

[10] K. Chatterjee and L. Doyen, Energy and mean-payoff parity markov
decision processes, in Mathematical Foundations of Computer Science
2011 (Springer, 2011), pp. 206–218.

[11] Y. Chen, X. Ding, A. Stefanescu and C. Belta, Formal approach to the
deployment of distributed robotic teams, IEEE Trans. Robot. 28(1)
(2012) 158–171.

[12] E. M. Clarke, O. Grumberg and D. Peled, Model Checking (MIT press,
1999).

[13] D. C. Conner, A. A. Rizzi and H. Choset, Composition of local potential
functions for global robot control and navigation, in 2003 IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2003. (IROS 2003). Proc.
Vol. 4 (IEEE, 2003), pp. 3546–3551.

[14] J. E. R. Cury, B. H. Krogh and T. Niinomi, Synthesis of supervisory
controllers for hybrid systems based on approximating automata,
IEEE Trans. Autom. Control 43(4) (1998) 564–568.

[15] X. C. Ding, M. Lazar and C. Belta, Receding horizon temporal logic
control for finite deterministic systems, in American Control Conf.
(ACC), 2012 (IEEE, 2012), pp. 715–720.

[16] X. C. Ding, S. L. Smith, C. Belta and D. Rus, Mdp optimal control under
temporal logic constraints, in 2011 50th IEEE Conf. Decision
and Control and European Control Conf. (CDC-ECC) (IEEE, 2011),
pp. 532–538.

[17] P. Doherty, F. Heintz and J. Kvarnstr€om, High-level mission specifi-
cation and planning for collaborative unmanned aircraft systems
using delegation, Unmanned Syst. 1(01) (2013) 75–119.

[18] G. E. Fainekos, A. Girard, H. Kress-Gazit and G. J. Pappas, Temporal
logic motion planning for dynamic robots, Automatica 45(2) (2009)
343–352.

[19] G. E. Fainekos, H. Kress-Gazit and G. J. Pappas, Hybrid controllers for
path planning: A temporal logic approach, in 44th IEEE Conf. Decision
and Control, 2005 and 2005 European Control Conf. CDC-ECC '05.
(IEEE, 2005), pp. 4885–4890.

[20] G. E. Fainekos, H. Kress-Gazit and G. J. Pappas, Temporal logic motion
planning for mobile robots, in Proc. 2005 IEEE Int. Conf. Robotics and
Automation, 2005. ICRA 2005. (IEEE, 2005), pp. 2020–2025.

[21] G. Ferrari-Trecate, M. Muselli, D. Liberati and M. Morari, A clustering
technique for the identification of piecewise affine systems, Auto-
matica 39(2) (2003) 205–217.

[22] C. Finucane, G. Jing and H. Kress-Gazit, LTLMoP: Experimenting with
language, temporal logic and robot control, in 2010 IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS) (IEEE, 2010), pp. 1988–
1993.

[23] P. Gastin and D. Oddoux, Fast LTL to büchi automata translation, in
Computer Aided Verification (Springer, 2001), pp. 53–65.

[24] A. Girard and G. J. Pappas, Approximation metrics for discrete and
continuous systems (2005).

[25] A. Girard and G. J. Pappas, Approximation metrics for discrete
and continuous systems, IEEE Trans. Autom. Control 52(5) (2007)
782–798.

[26] A. Girard and G. J. Pappas, Hierarchical control system design using
approximate simulation, Automatica 45(2) (2009) 566–571.

[27] L. Habets and J. H. van Schuppen, A control problem for affine dy-
namical systems on a full-dimensional polytope, Automatica 40(1)
(2004) 21–35.

[28] L. C. G. J. M. Habets, P. J. Collins and J. H. van Schuppen, Reachability
and control synthesis for piecewise-affine hybrid systems on sim-
plices, IEEE Trans. Autom. Control 51(6) (2006) 938–948.

214 H. Lin

[29] E. M. Hahn, H. Hermanns and L. Zhang, Probabilistic reachability for
parametric markov models, Int. J. Softw. Tools Technol. Transf. 13(1)
(2011) 3–19.

[30] J. Hu, J. Xu and L. Xie, Cooperative search and exploration in robotic
networks, Unmanned Syst. 1(1) (2013) 121–142.

[31] B. Johnson and H. Kress-Gazit, Probabilistic analysis of correctness of
high-level robot behavior with sensor error (2011).

[32] A. L. Juloski, S. Weiland and W. P. M. H. Heemels, A bayesian ap-
proach to identification of hybrid systems, IEEE Trans. Autom. Con-
trol 50(10) (2005) 1520–1533.

[33] S. Karaman and E. Frazzoli, Sampling-based motion planning with
deterministic -calculus specifications, in Proc. 48th IEEE Conf. De-
cision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conf. CDC/CCC 2009 (IEEE, 2009), pp. 2222–2229.

[34] S. Karaman and E. Frazzoli, Linear temporal logic vehicle routing
with applications to multi-uav mission planning, Int. J. Robust Non-
linear Control 21(12) (2011) 1372–1395.

[35] M. Karimadini and H. Lin, Fault-tolerant cooperative tasking for
multi-agent systems, Int. J. Control 84(12) (2011) 2092–2107.

[36] M. Karimadini and H. Lin, Guaranteed global performance through
local coordinations, Automatica 47(5) (2011) 890–898.

[37] A. Karimoddini, M. Karimadini and H. Lin, Decentralized hybrid
formation control of unmanned aerial vehicles (2014), arXiv:
1403.0258.

[38] A. Karimoddini, H. Lin, B. M. Chen and T. H. Lee, Hybrid formation
control of the unmanned aerial vehicles, Mechatronics 21(5) (2011)
886–898.

[39] A. Karimoddini, H. Lin, B. M. Chen and T. H. Lee, Hybrid three-di-
mensional formation control for unmanned helicopters, Automatica
49(2) (2013) 424–433.

[40] M. Kloetzer and C. Belta, A fully automated framework for control of
linear systems from temporal logic specifications, IEEE Trans. Autom.
Control 53(1) (2008) 287–297.

[41] M. Kloetzer and C. Belta, Automatic deployment of distributed teams
of robots from temporal logic motion specifications, IEEE Trans.
Robot. 26(1) (2010) 48–61.

[42] A. N. Kopeikin, S. S. Ponda, L. B. Johnson and J. P. How, Dynamic
mission planning for communication control in multiple unmanned
aircraft teams, Unmanned Syst. 1(1) (2013) 41–58.

[43] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver and M. D. Lemmon,
Supervisory control of hybrid systems, Proc. IEEE 88(7) (2000)
1026–1049.

[44] H. Kress-Gazit, Robot challenges: Toward development of verification
and synthesis techniques [from the guest editors], IEEE Robot.
Autom. Mag. 18(3) (2011) 22–23.

[45] H. Kress-Gazit, G. E. Fainekos and G. J. Pappas, Temporal-logic-based
reactive mission and motion planning, IEEE Trans. Robot. 25(6)
(2009) 1370–1381.

[46] H. Kress-Gazit, G. E. Fainekos and G. J. Pappas, Temporal-logic-based
reactive mission and motion planning, IEEE Trans. Robot. 25(6)
(2009) 1370–1381.

[47] H. Kress-Gazit, T. Wongpiromsarn and U. Topcu, Correct, reactive
robot control from abstraction and temporal logic specifications,
IEEE Robot. Autom. Mag. 18(3) (2011) 65–74.

[48] M. Kwiatkowska, G. Norman and D. Parker, Prism: Probabilistic
symbolic model checker, in Computer Performance Evaluation:
Modelling Techniques and Tools (Springer, 2002), pp. 200–204.

[49] M. Lahijanian, S. B. Andersson and C. Belta, Temporal logic motion
planning and control with probabilistic satisfaction guarantees, IEEE
Trans. Robot. 28(2) (2012) 396–409.

[50] C. W. Lee, Subdivisions and triangulations of polytopes, in Handbook
of Discrete and Computational Geometry (CRC Press, Inc., 1997),
pp. 271–290.

[51] D. M. W. Leenaerts and W. M. G. Van Bokhoven, Piecewise Linear
Modeling and Analysis (Springer, 1998).

[52] C. E. Leiserson, R. L. Rivest, C. Stein and T. H. Cormen, Introduction to
Algorithms (MIT press, 2001).

[53] M. D. Lemmon, K. He and I. Markovsky, Supervisory hybrid systems,
IEEE Control Syst. 19(4) (1999) 42–55.

[54] H. Lin and P. J. Antsaklis, Hybrid dynamical systems: An introduction
to control and verification, Found. Trends Syst. Control 1(1) (2014)
1–172.

[55] J. N. Lin and R. Unbehauen, Canonical piecewise-linear approxima-
tions, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39(8) (1992)
697–699.

[56] S. R. Lindemann and S. M. LaValle, Smoothly blending vector fields
for global robot navigation, in 44th IEEE Conf. Decision and Control,
2005 and 2005 European Control Conf. CDC-ECC'05 (IEEE, 2005),
pp. 3553–3559.

[57] S. C. Livingston, R. M. Murray and J. W. Burdick, Backtracking temporal
logic synthesis for uncertain environments, in Robotics and Automa-
tion (ICRA) 2012 IEEE Int. Conf. (IEEE, 2012), pp. 5163–5170.

[58] S. G. Loizou and K. J. Kyriakopoulos, Automatic synthesis of multi-
agent motion tasks based on ltl specifications, in 43rd IEEE Conf.
Decision and Control, 2004. CDC. Vol. 1 (IEEE, 2004), pp. 153–158.

[59] D. M. Lyons, R. C. Arkin, P. Nirmal, S. Jiang, T. M. Liu and J. Deeb,
Getting it right the first time: Robot mission guarantees in the
presence of uncertainty, in 2013 IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS) (IEEE, 2013), pp. 5292–5299.

[60] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit and M. Y. Vardi,
Iterative temporal motion planning for hybrid systems in partially
unknown environments, in Proc. 16th Int. Conf. Hybrid Systems:
Computation and Control (ACM, 2013), pp. 353–362.

[61] R. Milner, Communication and Concurrency (Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989).

[62] N. Piterman, A. Pnueli and Y. Saar, Synthesis of reactive (1) designs,
in Verification, Model Checking, and Abstract Interpretation (Springer,
2006), pp. 364–380.

[63] A. Pnueli and R. Rosner, On the synthesis of a reactive module, in
Proc. 16th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (ACM, 1989), pp. 179–190.

[64] M. M. Quottrup, T. Bak and R. I. Zamanabadi, Multi-robot planning: A
timed automata approach, in 2004 IEEE Int. Conf. Robotics and Au-
tomation, 2004. Proc. ICRA'04., Vol. 5 (IEEE, 2004), pp. 4417–4422.

[65] J. Raisch and S. D. O'Young, Discrete approximation and supervisory
control of continuous systems, IEEE Trans. Autom. Control 43(4)
(1998) 569–573.

[66] P. Ramadge and W. M. Wonham, The control of discrete event sys-
tems, Proc. IEEE 77(1) (1989) 81–98.

[67] P. J. Ramadge and W. M. Wonham, Supervisory control of a class of
discrete event processes, SIAM J. Control Optim.25(1) (1987) 206–230.

[68] M. Reynolds, Continuous temporal models, in AI 2001: Advances in
Artificial Intelligence (Springer, 2001), pp. 414–425.

[69] J. Roll, A. Bemporad and L. Ljung, Identification of piecewise affine
systems via mixed-integer programming, Automatica 40(1) (2004)
37–50.

[70] S. Sarid, B. Xu and H. Kress-Gazit, Guaranteeing high-level
behaviors while exploring partially known maps, in Robotics (2013),
p. 377.

[71] S. L. Smith, J. Tùmov�a, C. Belta and D. Rus, Optimal path planning for
surveillance with temporal-logic constraints, Int. J. Robot. Res. 30(14)
(2011) 1695–1708.

[72] M. Svorenova, I. Cerna and C. Belta, Optimal control of mdps with
temporal logic constraints (2013), arXiv:1303.1942.

[73] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach (Springer, New York, 2009).

Mission Accomplished 215

[74] M. Y. Vardi, An automata-theoretic approach to linear temporal logic,
in Logics for Concurrency (Springer, 1996), pp. 238–266.

[75] E. M. Wolff, U. Topcu and R. M. Murray, Optimal control with
weighted average costs and temporal logic specifications, in Robotics:
Science and Systems (2012).

[76] T. Wongpiromsarn, U. Topcu and R. M. Murray, Receding horizon
control for temporal logic specifications, in Proc. 13th ACM Int.
Conf. Hybrid Systems: Computation and Control (ACM, 2010),
pp. 101–110.

[77] T. Wongpiromsarn, U. Topcu and R. M. Murray, Synthesis of control
protocols for autonomous syst. Unmanned Systems 1(1) (2013) 21–
39.

[78] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu and R. M. Murray, Tulip:
A software toolbox for receding horizon temporal logic planning, in
Proc. 14th Int. Conf. Hybrid Syst.: Computation and Control (ACM,
2011), pp. 313–314.

[79] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli and D. Rus, Incre-
mental synthesis of control policies for heterogeneous multi-agent
systems with linear temporal logic specifications, in 2013 IEEE Int.
Conf. Robotics and Automation (ICRA) (IEEE, 2013), pp. 5011–5018.

[80] G. M. Ziegler, Lectures on Polytopes, Vol. 152 (Springer, 1995).

Hai Lin obtained his B.S. degree at the University
of Science and Technology Beijing and his M.S.
degree from the Chinese Academy of Sciences in
1997 and 2000, respectively. In 2005, he received
his Ph.D. degree from the University of Notre
Dame. Dr. Lin is currently an Assistant Professor at
the Department of Electrical Engineering, Univer-
sity of Notre Dame. Before returning to his alma
mater, Hai has been working as an Assistant Pro-
fessor in the National University of Singapore from
2006 to 2011. Dr. Lin's teaching and research

interests are in the multidisciplinary study of the problems at the inter-
sections of control, communication, computation and life sciences. His
current research thrust is on cyber-physical systems, multi-robot cooper-
ative tasking, systems biology and hybrid control.

Hai has been served in several committees and editorial board. He is the
Program Chair for IEEE ICCA 2011, IEEE CIS 2011 and the Chair for IEEE
Systems, Man and Cybernetics Singapore Chapter for 2009 and 2010. He is
a senior member of IEEE and a recipient of 2013 NSF CAREER award.

216 H. Lin

	Mission Accomplished: An Introduction to Formal Methods in Mobile Robot Motion Planning and Control
	1. Introduction
	2. Symbolic Motion Planning Problem
	3. Simulation, Bisimulation and Abstractions
	3.1. Transition systems
	3.2. Simulation relation
	3.3. Bisimulation quotient

	4. Motion Planning Under Affine Dynamics
	4.1. Affine functions on simplices
	4.2. Two basic control problems
	4.3. Discrete motion planning

	5. Nonlinear Control Dynamics
	6. New Directions and Challenges
	6.1. Uncertain environments
	6.2. Imperfect sensing or actuation
	6.3. Optimality
	6.4. Multi-robot systems

	7. Concluding Remarks
	Acknowledgment
	References

