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Abstract— In this paper, we study the reliable decentralized
supervisory control of discrete event systems (DESs) under
the general architecture, in which the decision for controllable
events employed is a combination of the conjunctive fusion
and disjunctive fusion rules. For a plant equipped with n local
supervisors, the notion of k-reliable (1 ≤ k ≤ n) decentralized
supervisor is formalized and investigated here. By k-reliable
decentralized supervisor, we mean that the specification can
be achieved exactly even under possible failures of any no
more than n − k local supervisors. It is worth noting that
the standard decentralized supervisory control problem in the
general architecture [14] can be regarded as a special case
of k-reliable decentralized supervisory control with k = n.
The main contributions of the paper lie on the proposed
necessary and sufficient conditions for the existences of k-
reliable decentralized supervisor and nonblocking k-reliable
decentralized supervisor in the context of the general archi-

tecture, based on the notions of the Σ̃uc-controllability and

k-reliably Σ̃c-coobservability of a sublanguage. This represents
a generalization of the results in [11].
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I. INTRODUCTION

When a system considered is physically distributed, the

decentralized supervisory control is commonly regarded as

more efficient than the centralized one [9], in which there are

a set of local supervisors, each makes control decisions based

only on its own direct observations. The past decade has

seen increasing research activities in the area of decentralized

supervisory control of discrete event systems (DESs), such

as [1], [3], [4], [7]-[10], [11]-[15]. In particular, Yoo and

Lafortune [14] presented a general architecture for decen-

tralized supervisory control of DESs based on conjunctive

and disjunctive fusion rules for local decisions.

Since the general decentralized architecture was initiated

by Yoo and Lafortune [14], it has been extensively adopted

in the literature. Rohloff and Lafortune [9] presented a new

approach of state estimation and safe controllers synthesis in

supervisory control of DESs under the general architecture.

For the framework of [14], Park and Cho proposed the
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existence condition of a decentralized supervisor for an

uncertain DES modeled by a set of possible nondetermin-

istic automata with internal events [8]. Kumar and Takai

[3] presented an inference-based ambiguity management in

decentralized decision-making in the general decentralized

architecture. Reference [15] generalized the architecture of

[14] to a conditional architecture, and studied the supervisor

existence of decentralized supervisory control with condi-

tional decisions. Park and Cho investigated the decentralized

supervisory control of DESs with communication delays

based on conjunctive and permissive decision structures [7].

Recently, the reliable decentralized supervisory control

of DESs has been formulated in [11] [12]. For a system

controlled by n local supervisors, a k-reliable (1 ≤ k ≤ n)

decentralized supervisor requires that it exactly achieves the

given specification under possible failures of any no more

than n − k local supervisors. The authors in [11] presented

the conditions for the existence of a k-reliable decentralized

supervisor by means of the modified controllability and

reliable coobservability. It is worth noting that the stan-

dard decentralized supervisory control problem [2] can be

regarded as a special case with k = n (i.e., synthesizing a

n-reliable decentralized supervisor).

However, the decentralized architecture considered in [11]

[12] is the conjunctive architecture. In this paper, we investi-

gate the following reliable decentralized supervisory control

of DESs in the general architecture:

For given a system controlled by n local super-

visors and a desired specification, check whether

there exists a k-reliable decentralized supervisor

in the general architecture. If there exists such

decentralized supervisor, how to design the local

supervisors such that the decentralized supervisor

synthesized is k-reliable (1 ≤ k ≤ n).

Firstly, we formalize the notion of k-reliable decentralized

supervisor in the general architecture. Roughly speaking, a

decentralized supervisor is said to be k-reliable if the local

supervisors achieve exactly the specification under possible

failures of any no more than n− k local supervisors, where

the decisions for disabled and enabled events are based on the

conjunctive and disjunctive fusion rules. Then the concepts

of Σ̃uc-controllability and k-reliably Σ̃c-coobservability of

a language are introduced. In particular, we present the

necessary and sufficient conditions for the existence of a

k-reliable decentralized supervisor in the general architec-

ture by means of the Σ̃uc-controllability and k-reliably Σ̃c-

coobservability. In addition, we formulate the construction of
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the local supervisors and the reliable decentralized supervisor

based on the conjunctive and disjunctive fusion rules.

The approach proposed in this paper is different from

those in the literature. The framework of [11] is based on

the conjunctive fusion rule for the decisions of disabled

events. Reference [12] extends the work of [11] to the case

of the marked language specification, which is still in the

conjunctive architecture. The architecture adopted by this

paper is the general decentralized architecture proposed by

Yoo and Lafortune [14]. The notion of k-reliable decentral-

ized supervisor and the concepts of Σ̃uc-controllability and

k-reliably Σ̃c-coobservability introduced in this paper are

different from those in [13]. As a result, the local supervisors

and the decentralized supervisor constructed in this paper

differ from those of [13].

The rest of the paper is organized as follows. Section II re-

calls some preliminaries of DESs. In Section III, we propose

an approach to synthesize a part of local supervisors which

is used to deduce the necessary and sufficient conditions of

the existence of reliable decentralized supervisors. In Section

IV, we investigate the reliable decentralized supervisor in the

general architecture. In particular, we present the necessary

and sufficient conditions for the existence of a (nonblocking)

k-reliable decentralized supervisor. In order to illustrate the

results proposed, an example is provided in Section V.

Finally, in Section VI, we summarize the main results of

the paper and address some related issues.

II. PRELIMINARIES

Consider a DES modeled by an automaton

G = (Q, Σ, δ, q0, Qm), (1)

where Q is the set of states, Σ is the finite set of events,

δ : Q × Σ → Q is the transition function, q0 ∈ Q is the

initial state, and Qm ⊆ Q is the set of marked states. Let Σ∗

denote the set of all finite strings over Σ, including the empty

string ǫ. The transition function δ can be extended to domain

Q × Σ∗ in the following recursive manner: δ(q, ǫ) = q and

δ(q, sσ) = δ(δ(q, s), σ) for all s ∈ Σ∗ and σ ∈ Σ.

A subset of Σ∗ is called a language. The language

generated by G, denoted by L(G), is defined by

L(G) = {s ∈ Σ∗ : δ(q0, s) is defined}, (2)

and the language marked by G is defined as

Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm}. (3)

For a language K ⊆ Σ∗, we denote the set of all prefixes

of strings in K as K , i.e.,

K = {s ∈ Σ∗ : st ∈ K for some t ∈ Σ∗}. (4)

K is called to be prefix-closed if K = K; and K is called

to be Lm(G)-closed if K = K ∩ Lm(G).
In the decentralized control architecture [2], a system G is

jointly controlled by n local supervisors SP1
, SP2

, · · · , SPn

according to the fusion rule on the local decision actions,

and each local supervisor can observe the locally observable

events and can control the controllable events. Denote Σi,c

and Σi,uc as the sets of locally controllable and uncon-

trollable events, respectively; Σi,o and Σi,uo as the sets

of locally observable and unobservable events, respectively,

where i ∈ I = {1, 2, · · · , n}. The projection Pi : Σ∗ → Σ∗

i,o

is defined inductively as Pi(ǫ) = ǫ, and for σ ∈ Σ and

s ∈ Σ∗,

Pi(sσ) =

{
Pi(s)σ, if σ ∈ Σi,o,

Pi(s), otherwise.
(5)

The sets of globally controllable and observable events are

respectively defined as

Σc =
⋃

i∈I

Σi,c, Σo =
⋃

i∈I

Σi,o,

and the sets of globally uncontrollable and unobservable

events are defined respectively as Σuc = Σ − Σc and

Σuo = Σ − Σo.

In this paper, we consider the reliable decentralized su-

pervisory control problem based on the general architecture

proposed by Yoo and Lafortune [14], which can be depicted

as Fig.1. In the setting of general decentralized control

architecture [14], the local supervisors make local enable

decision and local disable decision, and the decision fusion

for global enable and disable events is a fixed combination

of the conjunctive and disjunctive fusions. Formally, the set

of controllable events Σc is further partitioned into Σc,e and

Σc,d, i.e., Σc = Σc,e∪̇Σc,d, where the default setting for

controllable events in Σc,e is “enablement” and the default

setting for controllable events in Σc,d is “disablement”. The

local decisions over Σc,e are processed by the conjunctive

fusion rule while the local decisions over Σc,d are processed

by the disjunctive fusion rule. In addition, we denote Σi,c,e =
Σi,c ∩ Σc,e and Σi,c,d = Σi,c ∩ Σc,d.

Conjunctive Fusion Disjunctive Fusion

SP1
SP2 · · · SPn

P1 P2 · · · Pn

G
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Fig. 1. The general decentralized control architecture.

III. AN APPROACH OF SYNTHESIS FOR A PART OF

LOCAL SUPERVISORS IN GENERAL ARCHITECTURE

In order to illustrate the reliable decentralized supervisory

control of DESs in the general architecture, in this section,

we present an approach to synthesize a part of local super-

visors based on the conjunctive and disjunctive fusion rules,

and then investigate some main properties of the synthesis,

which will be used to deduce the conditions of the existence

of reliable decentralized supervisor.
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For σ ∈ Σc, denote

In(σ) = {i ∈ I : σ ∈ Σi,c},

where I = {1, 2, · · · , n}. Let A ∈ 2I , define ΣA,c =
∪i∈AΣi,c and ΣA,uc = Σ − ΣA,c. For i ∈ I , the local

supervisor is defined as a function SPi
: Pi(Σ

∗) → Γ, where

Γ = {γ ∈ 2Σ : Σuc∪(Σc,e−Σi,c) ⊆ γ, (Σc,d−Σi,c)∩γ = ∅}.
(6)

Usually, only the observable events can be observed by

the local supervisors. Therefore, the local supervisors are

supposed to make the same decision for the behaviors with

the same projection. This property is formally described as

follows.

Definition 1: Let Pi be a projection. The local supervisor

SPi
is called to be feasible if SPi

(Pi(s)) = SPi
(Pi(s

′

))
holds for any s, s

′

∈ Σ∗ with Pi(s) = Pi(s
′

).
Definition 2: For A ∈ 2I , the A-decentralized supervisor

in the general architecture, denoted by SA, is defined as

SA(s) = PΣc,e
(
⋂

i∈A SPi
(Pi(s)))

∪PΣc,d
(
⋃

i∈A SPi
(Pi(s))) ∪ ΣA,uc,

(7)

where PΣc,e
: Σ → Σc,e and PΣc,d

: Σ → Σc,d are projection

mappings [14].

Definition 3: The language generated by SA, denoted by

L(G, SA), is defined recursively in the usual manner: ǫ ∈
L(G, SA) and for any s ∈ Σ∗ and σ ∈ Σ,

sσ ∈ L(G, SA) ⇔ s ∈ L(G, SA), sσ ∈ L(G), σ ∈ SA(s).
(8)

The marked language Lm(G, SA) = L(G, SA) ∩ Lm(G).

Proposition 1: Let A, B ∈ 2I . For language K ⊆ L(G),
if L(G, SA) = K = L(G, SB), then L(G, SA∪B) = K.

Proof: It can be verified directly by induction on the length

of the strings in L(G, SA), L(G, SB) and K .

Next, we present the conditions of the existence of A-

decentralized supervisor SA satisfying L(G, SA) = K by

introducing the following notions of the controllability and

coobservability of K .

Definition 4: Let A ∈ 2I . A language K ⊆ L(G) is said

to be ΣA,uc-controllable if KΣA,uc ∩ L(G) ⊆ K.

Definition 5: Let A ∈ 2I . A language K ⊆ L(G) is said

to be ΣA,c-coobservable in the general architecture, if for

any s ∈ K and any σ ∈ ΣA,c, the following conditions hold:

(C1) If σ ∈ Σc,e, then sσ ∈ L(G) − K implies

(∃i ∈ A ∩ In(σ))P−1

i Pi(s)σ ∩ K = ∅; (9)

(C2) If σ ∈ Σc,d, then sσ ∈ K implies

(∃i ∈ A ∩ In(σ))(P−1

i Pi(s) ∩ K)σ ∩ L(G) ⊆ K. (10)

Remark 1: The definition of coobservability under the

conjunctive architecture is introduced by Barrett [1] and

Cassandras and Lafortune [2], in which language K is called

to be coobservable, if for any s ∈ K and any σ ∈ Σc that

sσ ∈ L(G) − K, then there is i ∈ I such that σ ∈ Σi,c and

P−1

i Pi(s)σ ∩ K = ∅. For the disjunctive architecture, the

notion of coobservability of K in [14] is defined as: for any

s ∈ K and any σ ∈ Σc that sσ ∈ K, then there is i ∈ I such

that σ ∈ Σi,c and (P−1

i Pi(s)∩K)σ∩L(G) ⊆ K. Therefore,

when A = I and Σc = Σc,e, the above Definition 5 in the

general architecture degenerates into the coobservability in

the conjunctive architecture; and if A = I and Σc = Σc,d,

then Definition 5 is consistent with the coobservability in the

disjunctive architecture.

Now we present a necessary and sufficient condition for

the existence of A-decentralized supervisor by using the

notions of ΣA,uc-controllability and ΣA,c-coobservability.

Theorem 1: Let A ∈ 2I . For a nonempty language K ⊆
L(G), there is an A-decentralized supervisor SA such that

L(G, SA) = K if and only if K is ΣA,uc-controllable and

ΣA,c-coobservable.

Proof: (⇒) For any s ∈ K and any σ ∈ ΣA,uc that sσ ∈
L(G), by Eq. (7) and L(G, SA) = K, we have s ∈ L(G, SA)
and σ ∈ SA(s). According to the definition of L(G, SA),
sσ ∈ L(G, SA), i.e., sσ ∈ K. Therefore, KΣA,uc ∩L(G) ⊆
K, that is, K is ΣA,uc-controllable.

Next, we further verify that K is ΣA,c-coobservable from

the following two cases.

Case 1.1: For any s ∈ K and any σ ∈ ΣA,c, if σ ∈ Σc,e

and sσ ∈ L(G) − K, then σ 6∈ SA(s) for L(G, SA) = K.

That is, there is i0 ∈ A such that σ 6∈ SPi0
(Pi0(s))). From

Eq. (6), σ 6∈ Σc,e − Σi0,c, i.e., i0 ∈ In(σ). Moreover, if

P−1

i0
Pi0(s)σ ∩ K 6= ∅, then there exists s

′

∈ Σ∗ such that

Pi0(s
′

) = Pi0(s) and s
′

σ ∈ K. From L(G, SA) = K , we

have s
′

σ ∈ L(G, SA), which indicates that σ ∈ SA(s
′

).
Note that σ ∈ Σc,e, we obtain σ ∈ ∩i∈ASPi

(Pi(s
′

)), and

then σ ∈ SPi0
(Pi0 (s

′

)). Due to Pi0 (s
′

) = Pi0(s), by the

feasibility condition (see Definition 1), σ ∈ SPi0
(Pi0(s)),

which is in contradiction with σ 6∈ SPi0
(Pi0 (s))). Therefore,

P−1

i0
Pi0(s)σ ∩ K = ∅.

Case 1.2: If σ ∈ Σc,d and sσ ∈ K, then from L(G, SA) =
K, we have sσ ∈ L(G, SA), which implies σ ∈ SA(s). So

σ ∈ ∪i∈ASPi
(Pi(s)) for σ ∈ Σc,d. That is, there is j0 ∈ A

such that σ ∈ SPj0
(Pj0 (s)). Notice that (Σc,d − Σj0,c) ∩

SPj0
(Pj0 (s)) = ∅, we have σ ∈ Σj0,c, i.e., j0 ∈ In(σ). By

the definition of SA and L(G, SA) = K, it can be proved

directly that (P−1

j0
Pj0(s) ∩ K)σ ∩ L(G) ⊆ K.

(⇐) Assume that K is ΣA,uc-controllable and ΣA,c-

coobservable, where A ∈ 2I . For s ∈ Σ∗ and each i ∈ I ,

define the local supervisor SPi
(Pi(s)) as follows:

SPi
(Pi(s))

= {σ ∈ Σi,c,d : (P−1

i Pi(s) ∩ K)σ ∩ L(G) ⊆ K}
∪{σ ∈ Σi,c,e : P−1

i Pi(s)σ ∩ K 6= ∅}
∪(Σc,e − Σi,c) ∪ Σuc,

(11)

and the A-decentralized supervisor SA is defined as Eq. (7).

In order to prove L(G, SA) = K, i.e., s ∈ L(G, SA) iff

s ∈ K for all s ∈ Σ∗, we show it by induction on the length

|s|.
If |s| = 0, i.e., s = ǫ, the base case holds obviously.

Suppose that s ∈ L(G, SA) iff s ∈ K for any string s with
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|s| ≤ n. The following is to prove it for sσ where |s| = n

and σ ∈ Σ.

Let sσ ∈ L(G, SA). By the definition of L(G, SA) and

induction hypothesis, we have s ∈ K , sσ ∈ L(G) and σ ∈
SA(s). We verify sσ ∈ K from the following cases.

Case 2.1: If σ ∈ ΣA,uc, then sσ ∈ K because of the

ΣA,uc-controllability of K .

Case 2.2: If σ ∈ ΣA,c ∩ Σc,e, then we show sσ ∈ K by

contradiction. Since K is ΣA,c-coobservable, if sσ 6∈ K , then

there is i ∈ A∩ In(σ) such that P−1

i Pi(s)σ∩K = ∅. From

Eq. (11), σ 6∈ SPi
(Pi(s)) and then σ 6∈ ∩i∈ASPi

(Pi(s)),
which is in contradiction with σ ∈ SA(s).

Case 2.3: If σ ∈ ΣA,c ∩ Σc,d, then σ ∈ SA(s), which

indicates that σ ∈ ∪i∈ASPi
(Pi(s)). As a result, there is

i ∈ A such that σ ∈ SPi
(Pi(s)). From Eq. (11), we

have (P−1

i Pi(s) ∩ K)σ ∩ L(G) ⊆ K. Notice that sσ ∈
(P−1

i Pi(s) ∩ K)σ ∩ L(G), so sσ ∈ K .

Conversely, let sσ ∈ K. We check that sσ ∈ L(G, SA)
from the following cases.

Case 3.1: If σ ∈ ΣA,uc, then σ ∈ SA(s) from the

definition of SA, which implies sσ ∈ L(G, SA) since sσ ∈
L(G) and the induction hypothesis s ∈ L(G, SA).

Case 3.2: If σ ∈ ΣA,c ∩ Σc,e, it is not difficult to prove

sσ ∈ L(G, SA) with the similar process of Case 2.2.

Case 3.3: If σ ∈ ΣA,c ∩ Σc,d, then from sσ ∈ K and

the ΣA,c-coobservability of K , there is i ∈ A ∩ In(σ)
such that (P−1

i Pi(s) ∩ K)σ ∩ L(G) ⊆ K. According to

the definition of SPi
, i.e., Eq. (11), σ ∈ SPi

(Pi(s)) and

then σ ∈ ∪i∈ASPi
(Pi(s)). Consequently, σ ∈ SA(s). By

Definition 3, we have sσ ∈ L(G, SA).

Definition 6: Let A ∈ 2I . The A-decentralized supervisor

SA is called to be nonblocking if Lm(G, SA) = L(G, SA).
Theorem 2: Let A ∈ 2I . For a nonempty language K ⊆

L(G), there is a nonblocking A-decentralized supervisor SA

such that L(G, SA) = K and Lm(G, SA) = K if and only

if K is ΣA,uc-controllable, ΣA,c-coobservable and Lm(G)-
closed.

Proof: (⇒) The ΣA,uc-controllability and ΣA,c-

coobservability of K have been proved in Theorem 1.

From L(G, SA) = K and Lm(G, SA) = K , it is easy to

show that K is Lm(G)-closed since

K = Lm(G, SA) = L(G, SA) ∩ Lm(G) = K ∩ Lm(G).

(⇐) We define the local supervisors and A-decentralized

supervisor as Eq. (11) and Eq. (7), respectively. By Theorem

1, we have L(G, SA) = K. On the other hand, since K is

Lm(G)-closed, we have

K = K ∩ Lm(G) = L(G, SA) ∩ Lm(G) = Lm(G, SA).

As a result, Lm(G, SA) = K = L(G, SA), that is, SA is

nonblocking.

IV. RELIABLE DECENTRALIZED SUPERVISORY CONTROL

IN GENERAL ARCHITECTURE

Based on the results presented in Section 3, we are ready

to investigate the reliable decentralized supervisor under the

general architecture, in which a system G is jointly controlled

by n local supervisors SP1
, SP2

, · · · , SPn
according to a fixed

combination of the conjunctive and disjunctive fusions on the

local decision actions.

Definition 7: Let K ⊆ L(G) be a nonempty language and

1 ≤ k ≤ n. The decentralized supervisor Sdec is said to be

k-reliable in the general architecture, if L(G, SA) = K for

any A ∈ 2I with |A| ≥ k, where |A| represents the number

of elements of A, and SA is the A-decentralized supervisor

in the general architecture.

For i ∈ I , denote Σ̃i,uc = Σ − Σ̃i,c and

Σ̃i,c = {σ ∈ Σi,c : |In(σ)| ≥ n − k + 1}.

Let A ∈ 2I , define Σ̃A,c = ∪i∈AΣ̃i,c and Σ̃A,uc = Σ−Σ̃A,c.

For the sake of simplicity, when A = I , we denote Σ̃c =
Σ̃I,c, Σ̃uc = Σ̃I,uc, and Sdec = SI .

Definition 8: A language K ⊆ L(G) is said to be Σ̃uc-

controllable if KΣ̃uc ∩ L(G) ⊆ K.

Definition 9: Let 1 ≤ k ≤ n. A language K ⊆ L(G)
is said to be k-reliably Σ̃c-coobservable in the general

architecture, if |As,σ| ≥ n − k + 1 for any s ∈ K and

any σ ∈ Σ̃c, where As,σ = As,σ,1 ∪ As,σ,2, and

As,σ,1 = {i ∈ In(σ) : P−1

i Pi(s)σ ∩ K = ∅}, (12)

As,σ,2 = {i ∈ In(σ) : (P−1

i Pi(s) ∩ K)σ ∩ L(G) ⊆ K}.
(13)

Remark 2: The above definition extends the correspond-

ing notion in [11] to the general architecture. In particular,

when Σc = Σc,e, it degenerates into the notion of reliable

(Σ̃c, k)-coobservability in the conjunctive architecture [11].

Lemma 1: Let 1 ≤ k ≤ n and K ⊆ L(G). There

is a k-reliable decentralized supervisor Sdec in the general

architecture, if and only if, K is ΣA,uc-controllable and

ΣA,c-coobservable for any A ∈ Ik , where

Ik = {A ∈ 2I : |A| = k}.

Proof: (⇒) Assume that there is a k-reliable decentralized

supervisor Sdec, then L(G, SA) = K for any A ∈ 2I

with |A| ≥ k. So L(G, SA) = K for any A ∈ Ik . By

Theorem 1, we know that K is ΣA,uc-controllable and ΣA,c-

coobservable.

(⇐) Assume that K is ΣA,uc-controllable and ΣA,c-

coobservable for any A ∈ Ik. We define the local supervisor

SPi
(Pi(s)) as Eq. (11) and the decentralized supervisor Sdec

is the same as Eq. (7) with A = I .

Next, we prove that Sdec is k-reliable, i.e., L(G, SB) = K

for any B ∈ 2I with |B| ≥ k. If |B| = k, then from the

assumption, K is ΣB,uc-controllable and ΣB,c-coobservable.

By Theorem 1, we have L(G, SB) = K . If |B| > k, then

there are B1, B2, · · · , Bm such that

B = B1 ∪ B2 ∪ · · · ∪ Bm

and Bi ∈ Ik for each Bi. By the assumption, K is ΣBi,uc-

controllable and ΣBi,c-coobservable for each Bi. According

to Theorem 1, we have

L(G, SB1
) = L(G, SB2

) = · · · = L(G, SBm
) = K,
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which implies L(G, SB) = K according to Proposition 1.

So Sdec is k-reliable.

Lemma 2: Let 1 ≤ k ≤ n and K ⊆ L(G). K is Σ̃uc-

controllable and k-reliably Σ̃c-coobservable, if and only if,

K is ΣA,uc-controllable and ΣA,c-coobservable for any A ∈
Ik, where Ik = {A ∈ 2I : |A| = k}.

Proof: (⇐) We first prove that K is Σ̃uc-controllable, i.e.,

KΣ̃uc ∩ L(G) ⊆ K. Denote

Σc(k) = {σ ∈ Σc : |In(σ)| ≤ n − k},

then

KΣ̃uc ∩ L(G) = (KΣc(k) ∩ L(G)) ∪ (KΣuc ∩ L(G)).

For any sσ ∈ KΣc(k) ∩ L(G), we have σ ∈ Σc and

|In(σ)| ≤ n − k, which shows that there is B ∈ Ik such

that σ ∈ ΣB,uc. Notice that K is ΣB,uc-controllable, i.e.,

KΣB,uc∩L(G) ⊆ K , so sσ ∈ K . That is, KΣc(k)∩L(G) ⊆
K. On the other hand, KΣuc ∩ L(G) ⊆ K since

KΣuc ∩ L(G) ⊆ KΣB,uc ∩ L(G).

Therefore, KΣ̃uc ∩ L(G) ⊆ K.

Next, we verify that K is k-reliably Σ̃c-coobservable by

contradiction. Suppose that there is s ∈ K and σ ∈ Σ̃c

satisfying |As,σ| ≤ n − k, then |In(σ)| ≥ n − k + 1 and

|In(σ) − As,σ| ≥ 1. Therefore, there is j ∈ In(σ) − As,σ

and B ∈ Ik such that As,σ∩B = ∅ and j ∈ B, which implies

σ ∈ ΣB,c. Note that K is ΣB,c-coobservable, for the above

s and σ, if σ ∈ Σc,e and sσ ∈ L(G) − K , then there exists

ℓ ∈ B satisfying ℓ ∈ In(σ) and P−1

ℓ Pℓ(s)σ∩K = ∅, i.e., ℓ ∈
As,σ,1 ⊆ As,σ . Hence ℓ ∈ As,σ∩B, which is in contradiction

with As,σ ∩ B = ∅. On the other side, if σ ∈ Σc,d and

sσ ∈ K , then there exists h ∈ B satisfying h ∈ In(σ) and

(P−1

h Ph(s) ∩ K)σ ∩ L(G) ⊆ K, i.e., h ∈ As,σ,2 ⊆ As,σ .

Hence h ∈ As,σ ∩ B, which is also in contradiction with

As,σ ∩ B = ∅.

(⇒) We first prove that K is ΣA,uc-controllable for any

A ∈ Ik. Since

ΣA,uc = Σuc ∪ {σ ∈ Σc : σ 6∈ ΣA,c}
⊆ Σuc ∪ {σ ∈ Σc : |In(σ)| ≤ n − k}

= Σ̃uc,

(14)

where A ∈ Ik. Therefore, KΣA,uc ∩ L(G) ⊆ KΣ̃uc ∩
L(G) ⊆ K by the Σ̃uc-controllability of K .

Next, we prove that K is ΣA,c-coobservable for any A ∈
Ik. For any s ∈ K and any σ ∈ ΣA,c, the proof is completed

by the following two cases.

Case 1: If σ ∈ ΣA,c ∩ Σ̃c, i.e., |In(σ)| ≥ n− k + 1, then

|As,σ| ≥ n − k + 1 since K is k-reliably Σ̃c-coobservable.

Notice that |A| = k, we have A ∩ As,σ 6= ∅, that is, there

is i ∈ A such that i ∈ In(σ) and i ∈ As,σ,1 ∪ As,σ,2. When

σ ∈ Σc,e and sσ ∈ L(G)−K, by Eq. (13), it is obtained that

i 6∈ As,σ,2. Therefore, i ∈ As,σ,1, i.e., P−1

i Pi(s)σ ∩ K = ∅.

On the other hand, when σ ∈ Σc,d and sσ ∈ K , by Eq. (12),

we have i 6∈ As,σ,1 for sσ ∈ P−1

i Pi(s)σ∩K . So, i ∈ As,σ,2,

i.e., (P−1

i Pi(s)∩K)σ ∩L(G) ⊆ K . We complete the proof

of ΣA,c-coobservability of K in the first case.

Case 2: If σ ∈ ΣA,c − (ΣA,c ∩ Σ̃c), i.e., σ ∈ ΣA,c and

σ ∈ Σ̃uc, by the Σ̃uc-controllability of K , it can be verified

straight that the conditions of Definition 5 hold.

From Lemma 1 and Lemma 2, we have the following

necessary and sufficient conditions for the existence of a k-

reliable decentralized supervisor in the general architecture.

Theorem 3: Let 1 ≤ k ≤ n and K ⊆ L(G). There is a k-

reliable decentralized supervisor in the general architecture,

if and only if, K is Σ̃uc-controllable and k-reliably Σ̃c-

coobservable.

Proof: It is a combination of Lemma 1 and Lemma 2.

Remark 3: The existence conditions of Theorem 3 gen-

eralize the results of [11] to the general architecture. When

Σc = Σc,e, Theorem 3 degenerates into the necessary and

sufficient conditions of k-reliable decentralized supervisor in

conjunctive architecture [11].

Theorem 4: Let 1 ≤ k ≤ n and K ⊆ L(G). There

is a nonblocking k-reliable decentralized supervisor Sdec in

the general architecture such that Lm(G, SA) = K for any

A ∈ 2I with |A| ≥ k, if and only if, K is Σ̃uc-controllable,

k-reliably Σ̃c-coobservable and Lm(G)-closed.

Proof: (⇒) Due to Theorem 3, we only need to prove that

K is Lm(G)-closed. From Definition 7 and Lm(G, SA) =
K , we have

K = Lm(G, SA) = L(G, SA) ∩ Lm(G) = K ∩ Lm(G).

(⇐) By Theorem 3, there is a k-reliable decentralized

supervisor Sdec such that L(G, SA) = K for any A ∈ 2I

with |A| ≥ k. On the other hand, since K is Lm(G)-closed,

K = K ∩ Lm(G) = L(G, SA) ∩ Lm(G) = Lm(G, SA).

Therefore, K = Lm(G, Sdec) and

Lm(G, Sdec) = K = L(G, Sdec),

that is, Sdec is nonblocking.

Remark 4: Theorem 4 is a generalization of one of

the main results presented in [14]. In fact, the necessary

and sufficient conditions for the existence of nonblocking

decentralized supervisor in [14] (Theorem 1 on page 343

of [14]) are exactly consistent with those of nonblocking n-

reliable decentralized supervisor of Theorem 4 (i.e., k = n

in Theorem 4).

V. AN ILLUSTRATIVE EXAMPLE

Theorem 3 shows that we can check the existence of the

k-reliable decentralized supervisor by means of testing the

Σ̃uc-controllability and k-reliably Σ̃c-coobservability of K .

Next, an illustrative example is given in this section.

Example 1: Consider a DES G modeled by an automaton

shown in Fig. 2. Let n = 3 (i.e., I = {1, 2, 3}) and

Σ1,o = {σ1, σ2, σ5}; Σ1,c,e = {σ1}, Σ1,c,d = {σ2};
Σ2,o = {σ1, σ4}; Σ2,c,e = {σ1}, Σ2,c,d = {σ4};
Σ3,o = {σ2, σ3}; Σ3,c,e = {σ3}, Σ3,c,d = {σ2}.
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Consider language K = σ1 + σ2 + σ4σ5 + σ3σ5, then

K ⊆ L(G). In the following, we verify that there is a 2-

reliable decentralized supervisor by checking that K is Σ̃uc-

controllable and 2-reliably Σ̃c-coobservable, where

Σ̃c = {σ ∈ Σc : |In(σ)| ≥ 2} = {σ1, σ2},

and Σ̃uc = Σ − Σ̃c = {σ3, σ4, σ5}.

(1) K is Σ̃uc-controllable because

KΣ̃uc ∩ L(G) = {σ3, σ4, σ3σ5, σ4σ5} ⊆ K.

(2) Next we prove that K is 2-reliably Σ̃c-coobservable,

i.e., for any s ∈ K and any σ ∈ Σ̃c, |As,σ| ≥ 2 holds. In

fact, on the one hand, only σ = σ1 and s = σ4σ5 satisfies

s ∈ K , σ ∈ Σ̃c, σ ∈ Σc,e and sσ ∈ L(G) − K, and then

As,σ,1 = {i ∈ In(σ) : P−1

i Pi(s)σ ∩ K = ∅} = {1, 2}

and

As,σ,2 = {i ∈ In(σ) : (P−1

i Pi(s)∩K)σ∩L(G) ⊆ K} = ∅.

Therefore, |As,σ| = |As,σ,1 ∪ As,σ,2| = 2.

On the other hand, only σ = σ2 and s = ǫ satisfies s ∈ K,

σ ∈ Σ̃c, σ ∈ Σc,d and sσ ∈ K , in this case, we can calculate

As,σ,1 = ∅ and As,σ,2 = {1, 3}. Therefore, |As,σ| = 2. By

Definition 9, K is 2-reliably Σ̃c-coobservable.

Therefore, according to Theorem 3, there is a 2-reliable

decentralized supervisor in the general architecture.

In fact, from Eq. (11), the local supervisors can be

designed as follows:

SP1
(P1(s)) =






{σ1, σ2, σ3, σ5}, if P1(s) = ǫ,

{σ3, σ5}, if P1(s) = σ5,

{σ2, σ3, σ5}, otherwise.

SP2
(P2(s)) =

{
{σ1, σ3, σ4, σ5}, if P2(s) = ǫ,

{σ3, σ4, σ5}, otherwise.

SP3
(P3(s)) =





{σ1, σ2, σ3, σ5}, if P3(s) = ǫ,

{σ1, σ5}, if P3(s) = σ3,

{σ1, σ2, σ5}, otherwise.

Consequently, we may check straight that the decentralized

supervisor is 2-reliable, since

L(G, SA) = {ǫ, σ1, σ2, σ3, σ4, σ3σ5, σ4σ5} = K

for any A ∈ 2I with |A| ≥ 2.

VI. CONCLUSION

In this paper, we have investigated the reliable decen-

tralized supervisory control problem without communication

based on a combination of the conjunctive and disjunctive

fusion rules, which has generalized the results in the conjunc-

tive architecture [11]. Firstly, we have presented an approach

to synthesize part of local supervisors, and formulated the

notion of k-reliable decentralized supervisor in the general

architecture. Then the concepts of the Σ̃uc-controllability

and k-reliably Σ̃c-coobservability of a sublanguage were

introduced. Based on these new concepts, necessary and

sufficient conditions for the existence of a (nonblocking)

k-reliable decentralized supervisor were presented in the

context of the general architecture.

With the results obtained in this paper, we will consider the

reliable robust nonblocking supervisory control of DESs with

communication [1] and continue our previous work of [5],

[6] to investigate the reliable control for stochastic discrete

event systems in the subsequent work.
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