
Optimal Control of Switched Systems via Nonlinear Optimization

Based on Direct Di�erentiations of Value Functions�

Xuping Xuy Panos J. Antsaklisz

Abstract

This paper presents an approach for solving optimal control problems of switched systems.

In general, in such problems one needs to �nd both optimal continuous inputs and optimal

switching sequences, since the system dynamics vary before and after every switching instant.

After formulating the optimal control problem, we propose a two stage optimization methodol-

ogy for it. Since many practical problems only concern Stage 1 optimization where the number

of switchings and the sequence of active subsystems are given, we then concentrate on Stage 1

optimization problems and propose a method for solving them, which is via nonlinear optimiza-

tion and based on direct di�erentiations of value functions. Moreover, the method is modi�ed

and applied to general switched linear quadratic (GSLQ) problems. Implementation diÆcul-

ties of the method can be successfully addressed for GSLQ problems. Examples are shown to

illustrate the results in the paper.

1 Introduction

A switched system is a particular kind of hybrid system that consists of several subsystems and a

switching law specifying the active subsystem at each time instant. Examples of switched systems

can be found in chemical processes, automotive systems, and electrical circuit systems, etc.

Recently, optimal control problems of hybrid and switched systems have been attracting re-

searchers from various �elds in science and engineering, due to the problems' signi�cance in theory

and application. The available results in the literature on such problems can be classi�ed into two

categories, i.e., theoretical and practical. [4, 8, 20, 26, 27, 29, 34] are some primarily theoretical

results. These results extended the classical maximum principle or the dynamic programming ap-

proach to such problems. Among them, the earliest result is [29] which proves a maximum principle

for hybrid systems with autonomous switchings only. Another early result is a proof of the exis-

tence of optimal control for a system with two subsystems by Seidman in [26]. More complicated

versions of maximum principle under various additional assumptions are proved by Sussmann in

[27] and by Piccoli in [20]. In [8, 34], Capuzzo Dolcetta and Yong study systems with switchings

using the dynamic programming approach to derive the Hamilton-Jacobi-Bellman (HJB) equations
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and prove the existence and uniqueness of viscosity solutions. Branicky in [4] formulates optimal

control problems for hybrid systems modeled by his uni�ed model approach; he also proposes some

theoretically algorithmic approaches related to some inequalities of the value functions. However,

because there are no eÆcient constructive methodology suggested in these papers for obtaining

optimal solutions, there is a signi�cant gap between theoretical results and their applications to

real-world examples. As to the second category of practical results, researchers take advantage of

the availability of high speed computers and eÆcient nonlinear optimization techniques to develop

approaches for solving such problems (see e.g., [4, 5, 6, 12, 13, 15, 16, 25, 24, 28]). The problem

formulations and the methodologies are very diverse in this category. For example, in [4], general

formulations and algorithms for optimal control of hybrid systems are proposed. In [16], a novel al-

gorithm using constrained di�erential dynamic programming is proposed for a class of discrete-time

hybrid-state systems. Johansson and Rantzer in [13, 23], by using an inequality of Bellman type,

propose upper and lower bounds of optimal cost for quadratic control of piecewise linear systems;

however no explicit method for deriving optimal control is given. Riedinger and his coworkers in

[25, 24] have tried to apply the hybrid maximum principle to time optimal and linear quadratic

control of systems with linear subsystems. More recently, some heuristically oriented methods have

been reported. For example, Lincoln in [15] develops an algorithm which prunes the search trees

in discrete-time LQR control of switched linear systems; Branicky in [5, 6] proposes fast marching

algorithms which are related to the behavioral programming in computer science.

It is worth noting that because there are many di�erent models and optimal control objectives for

hybrid systems, the above papers often di�er greatly in their problem formulations and approaches.

Switched systems, on the other hand, tend to be described by similar models, and similar optimal

control problem formulations have appeared in the literature. (e.g, [12, 13, 16, 25, 28, 32]). For an

optimal control problem of a switched system, one needs to �nd both an optimal continuous input

and an optimal switching sequence since the system dynamics vary before and after every switching

instant. Due to the involvement of switching sequences, such a problem is in general diÆcult to

solve. Interested readers may refer to [32] for an overview of the problem and its diÆculties. Most

of the methods in the literature that we are aware of are based on some discretization of continuous-

time space and/or discretization of state space into grids and use search methods for the resultant

discrete model to �nd optimal/suboptimal solutions. But the discretization approaches may lead

to computational combinatoric explosion and the solutions obtained may not be accurate enough

(see [30]). In view of this, in this paper, we explore an approach that is not based on discretization

of the time space.

This paper presents an approach for solving optimal control problems of switched systems. Un-

like the many literature results, the characteristics of our approach is twofold. First, our approach is

not based on the discretization of the time space. Second, we emphasize on accurate optimization

of switching instants. Optimal control problems for switched systems are �rst carefully formu-

lated. We then propose a two stage optimization methodology. Since the two stage optimization

methodology is still diÆcult to implement, we then concentrate on Stage 1 optimization where the

number of switchings and the order of active subsystems are given. Focusing on Stage 1 problems

is appropriate because in many practical situations, we only need to study problems with a �xed

number of switchings and a �xed order of active subsystems (e.g., the speeding up of an automobile

power train only requires switchings from gear 1 to 2 to 3 to 4) and in such cases the solution to
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Stage 1 is indeed optimal for the problem. On the other hand, Stage 1 optimization itself is already

challenging enough and solving it is a �rst step toward solving the general problem which does

not possess a good solution up to now. A Stage 1 problem can further be decomposed into Stage

1(a), which is a conventional optimal control problem that �nds the optimal cost given the order

of active subsystems and the switching instants, and Stage 1(b), which is a nonlinear optimization

problem that �nds the optimal switching instants. Stage 1(b) poses diÆculties because it is hard

to obtain the values of the derivatives of the Stage 1(a) optimal cost with respect to the switching

instants. To address these diÆculties, we then propose a method that approximates such deriva-

tives by direct di�erentiations of value functions (Theorem 5.1). Moreover, the method is modi�ed

and applied to general switched linear quadratic (GSLQ) problems. Implementation diÆculties of

the method can be successfully addressed for GSLQ problems.

The structure of the paper is as follows. In Section 2, we formulate the optimal control problem

we will study in this paper. In Section 3, we show that such a problem can be posed as a two stage

optimization problem under some additional assumptions. From Section 4 on, we concentrate

on Stage 1 optimization problems. In Section 4, we discuss Stage 1(a) and 1(b) and propose a

conceptual algorithm. In Section 5, we derive in detail how to obtain the approximations of the

derivatives which are required by Stage 1(b) by direct di�erentiations of value functions. The

method is modi�ed in Section 6 and applied to GSLQ problems. Examples are given in Section 7

to illustrate the e�ectiveness of the method. Section 8 concludes the paper.

2 Problem Formulation

2.1 Switched Systems

Switched systems

A switched system is a particular kind of hybrid system that consists of several subsystems and

a switching logic among them. The feature that distinguishes a switched system from a general

hybrid system is that its continuous state does not exhibit jumps at the switching instants. The

switched systems we shall consider in this paper are de�ned as follows.

De�nition 2.1 (Switched System) A switched system is a tuple S = (D;F ;L) where

� D = (I; E) is a directed graph indicating the discrete structure of the system. The node set

I = f1; 2; � � � ;Mg is the set of indices for subsystems. The directed edge set E is a subset of

I � I � f(i; i)ji 2 Ig which contains all valid events. If an event e = (i1; i2) takes place, the

system switches from subsystem i1 to i2.

� F = ffi : Xi � Ui � R ! R
n jXi � R

n ; Ui � R
m ; i 2 Ig with fi describing the vector �eld for

the i-th subsystem _x = fi(x; u; t).

� L = f�ej�e � R
n ; e 2 Eg provides us with a logic constraint that relates the continuous

state and mode switchings. Note for any e 2 E, �e 6= ;. Only when x 2 �e, e = (i1; i2), a

switching from i1 to i2 is possible. 2
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In view of De�nition 2.1, a switched system is a collection of subsystems related by a switching

logic described by D and L. Note that one distinct feature of a switched system is that it has

no discontinuities of the state x at the switching instants. If a particular switching law has been

speci�ed (the law may be speci�ed by state space partitions or by time involvements), then the

switched system can be described as

_x(t) = fi(t)(x(t); u(t); t) (2.1)

i(t) = '(x(t); i(t�); t); (2.2)

where ' : Rn � I � R ! I determines the active subsystem at instant t. Note that (2.1)-(2.2)

are used as the de�nition of switched systems in some of the literature (e.g., [12]). Here we adopt

De�nition 2.1 rather than (2.1)-(2.2) because in design problems, in general, ' is not de�ned a

priori and it is a designer's task to �nd a switching law.

Switching sequences

For a switched system S, the control input of the system consists of both a continuous input

u(t); t 2 [t0; tf ] and a switching sequence. We de�ne a switching sequence as follows.

De�nition 2.2 (Switching Sequence) For a switched system S, a switching sequence � in

[t0; tf ] is de�ned as

� = ((t0; i0); (t1; e1); (t2; e2); � � � ; (tK ; eK)); (2.3)

with 0 � K <1, t0 � t1 � t2 � � � � � tK � tf , and i0 2 I, ek = (ik�1; ik) 2 E for k = 1; 2; � � � ;K.

We de�ne �[t0;tf ]
4
= f�'s in [t0; tf ]g. 2

A switching sequence � as de�ned above indicates that, if tk < tk+1, then subsystem ik is

active in [tk; tk+1) ([tK ; tf ] if k = K); if tk = tk+1, then ik is switched through at instant tk
(`switched through' means that the system switches from subsystem ik�1 to ik and then to ik+1
all at instant tk). For a switched system to be well-behaved, we generally exclude the undesirable

Zeno phenomenon, i.e., in�nitely many switchings in �nite amount of time. Hence in De�nition 2.2,

we only allow nonZeno sequences which switch at most a �nite number of times in [t0; tf ], though

di�erent sequences may have di�erent numbers of switchings. We specify � 2 �[t0;tf ] as a discrete

input to a switched system. The overall control input to the system is therefore a pair (�; u).

Example 2.1 (An Automotive Control System) A manual transmission car with four gears

is a good example of a switched system. If we denote the lateral position as x1 and the velocity x2,

the system dynamics at gear i can be described by

_x1 = x2

_x2 = �i(x2)u;

where the nonlinear gear eÆciency function �i(x2) is depicted in �gure 1.

For this system, I = f1; 2; 3; 4g, all Xi = R
n and all Ui = [0; umax], where umax is given. If the

gear can only be shifted one gear up or down, we have E = f(1; 2); (2; 1); (2; 3); (3; 2); (3; 4); (4; 3)g;

moreover, �(1;2) = �(2;1) = fxjx2 2 [10; 20]g, �(2;3) = �(3;2) = fxjx2 2 [20; 40]g, �(3;4) = �(4;3) =

fxjx2 2 [40; 60]g . The control input of this system consists of the continuous input u (the throttle

position) and the external switching sequence (gear shifting). 2
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Figure 1: The nonlinear gear eÆciency functions �i.

2.2 An Optimal Control Problem

Note that in the sequel in this paper, we assume that Xi = R
n , Ui = R

m and �e = R
n for any

i 2 I, e 2 E and report results under these assumptions. We assume these because on one hand

optimal control problems under these assumptions are already challenging and interesting enough

and well deserve our attention; on the other hand problems under more general constraints are still

under extensive researches. We also de�ne U[t0;tf ]
4
= fuju 2 Cp[t0; tf ]; u(t) 2 R

mg; in other words,

U[t0;tf ] is the set of all piecewise continuous functions for t 2 [t0; tf ] that take values in R
m .

Problem 2.1 Consider a switched system S = (D;F ;L). Given a �xed time interval [t0; tf ], �nd

a continuous input u 2 U[t0;tf ] and a switching sequence � 2 �[t0;tf ] such that the corresponding

continuous state trajectory x departs from a given initial state x(t0) = x0 and meets an (n � lf )-

dimensional smooth manifold Sf = fxj�f (x) = 0; �f : R
n ! R

lf g at tf and the cost functional

J =  (x(tf )) +

Z tf

t0

L(x(t); u(t); t) dt (2.4)

is minimized. 2

Problem 2.1 is a basic optimal control problem with �xed end-time where the �nal state is on a

smooth manifold. As in the usual practice of formulating optimal control problems (see [1]), in the

sequel, we assume that f , L are continuous and have continuous partial derivatives with respect

to x and t; �f is assumed to be continuously di�erentiable;  has twice continuous derivatives.

Besides these assumptions, in the following, whenever necessary, we will further assume that they

possess enough smoothness properties we need in our derivations.

The way we formulate Problem 2.1 with a �xed end-time is mainly for the convenience of

subsequent studies in this paper. Note that for a problem with free end-time tf , we can introduce

an additional state variable and transcribe it to a problem with �xed end-time (for more details,

see [30]).

Analytical tools such as the maximum principle and the Hamilton-Jacobi-Bellman (HJB) equa-

tion for hybrid and switched systems have been derived in the literature (see [20, 27, 29, 32, 34]).

However, it is diÆcult to directly use these tools to �nd optimal controls even for linear switched

systems. For details and comments on the diÆculties of using them to obtain optimal control

solutions, see [30].
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3 Two Stage Optimization

In general, we need to �nd an optimal control solution (��; u�) for Problem 2.1 such that

J(��; u�) = min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u): (3.1)

Notice that for any �xed switching sequence �, Problem 2.1 reduces to a conventional optimal

control problem for which we only need to �nd an optimal continuous input u that minimizes

J�(u) = J(�; u). This idea naturally leads us toward considering Problem 2.1 as a two stage

optimization problem. Under some additional assumptions, we can prove the following lemma that

provides a way to do so.

Lemma 3.1 For Problem 2.1, if

(a). an optimal solution (��; u�) exists and

(b). for any given switching sequence �, there exists a corresponding u� = u�� such that J�(u) =

J(�; u) is minimized,

then the following equation holds

min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) = min

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.2)

Proof: First we claim that

min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) � inf

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.3)

This is because for any �xed �, there exists a u�� such that J(�; u��) = minu2U[t0;tf ]
J(�; u). But for

every pair (�; u��), we must have J(�
�; u�) � J(�; u��), therefore from (3.3) we must have

J(��; u�) � inf
�2�[t0;tf ]

J(�; u��) = inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.4)

While we also have the inequality

inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u) � min
u2U[t0;tf ]

J(��; u) = J(��; u���): (3.5)

In (3.5) we can choose u��� = u�, since for any other u, we must have J(��; u�) � J(��; u) due to

the optimality of (��; u�). Hence combining (3.4) and (3.5) we have

J(��; u�) � inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u) � J(��; u���) = J(��; u�): (3.6)

Hence all inequalities in (3.6) must be equalities and the inf�2�[t0;tf ]
can be replaced by min�2�[t0;tf ]

so we obtain

J(��; u�) = min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) = min

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.7)

2

The right hand side of (3.2) needs twice the minimization process. This supports the validity

of the following two stage optimization methodology.

A Two Stage Optimization Methodology
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Stage 1. Fixing �, solve the inner minimization problem.

Stage 2. Regarding the optimal cost for each � as a function

J1 = J1(�) = min
u2U[t0;tf ]

J(�; u); (3.8)

minimize J1 with respect to � 2 �[t0;tf ]. 2

In more detail, we can implement the above methodology by the following algorithm.

Algorithm 3.1 (A Two Stage Algorithm)

Stage 1. (a). Fix the total number of switchings to be K and the sequence of active subsystems

and let the minimum value of J with respect to u be a function of the K switching

instants, i.e., J1 = J1(t1; t2; � � � ; tK) for K � 0 (t0 � t1 � t2 � � � � � tK � tf ). Find J1.

(b). Minimize J1 with respect to t1; t2; � � � ; tK .

Stage 2. (a). Vary the order of active subsystems to �nd an optimal solution under K switchings.

(b). Vary the number of switchings K to �nd an optimal solution for Problem 2.1. 2

The above algorithm needs further implementations. In practice, many problems only require

the solutions of optimal continuous inputs and optimal switching instants for Stage 1 optimization

where a �xed number of switchings and a �xed sequence of active subsystems are given. In general,

explicit expressions of J1 are diÆcult to obtain or quite complicated even for very simple problems.

Therefore it is necessary to devise optimization methods that do not require the explicit expression

of J1 as a function of tk's. In the next section, we shall discuss Stage 1 optimization in detail.

4 More on Stage 1 Optimization

Now we concentrate on Stage 1 optimization. On the one hand, Stage 1 optimization has already

presented enough challenge to us. On the other hand, since many real world problems are in fact

stage 1 optimization problems, Stage 1 does deserve our attention. For example, the speeding-up

of a power train only requires switchings from gear 1 to 2 to 3 to 4. As can be seen from Algorithm

3.1 in Section 3, Stage 1 can be further decomposed into two sub-steps (a) and (b). Stage 1(a)

is in essence a conventional optimal control problem which seeks the minimum value of J with

respect to u under a given switching sequence �= ((t0; i0); (t1; e1); � � � ; (tK ; eK)). We denote the

corresponding optimal cost as a function J1(t̂), where t̂
4
= (t1; t2; � � � ; tK)

T . Stage 1(b) is in essence

a constrained nonlinear optimization problem

mint̂ J1(t̂)

subject to t̂ 2 T
(4.1)

where T
4
= ft̂ = (t1; t2; � � � ; tK)

T jt0 � t1 � t2 � � � � � tK � tfg.

In order to solve a Stage 1 problem, one needs to resort to not only optimal control methods,

but also nonlinear optimization techniques. Except for very few classes of problems (e.g. minimum
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energy problems in [30]), analytical expressions of J1(t̂) are almost impossible to obtain. This

is evident from the fact that very few classes of conventional optimal control problems possess

analytical solutions. The unavailability of analytical expressions of J1(t̂) henceforth makes Stage

1(b) optimization diÆcult to carry out. However even without the expressions of J1(t̂), if we can

�nd the values of the derivatives @J1
@t̂

and @2J1
@t̂2

, we can still solve Stage 1(b) by employing some

nonlinear optimization algorithms. Let us elaborate more on Stage 1(a) and 1(b) in the followings.

Stage 1(a)

For Stage 1(a) where a switching sequence � = ((t0; i0); (t1; e1); � � � ; (tK ; eK)) is given, �nding

J1(t̂) for the corresponding t̂ = (t1; � � � ; tK)
T is a conventional optimal control problem. Note that

although di�erent subsystems are active in di�erent time intervals, the problem is conventional

since these intervals are �xed. In Stage 1(a), we need to �nd an optimal continuous input u and

the corresponding minimum J . In order to �nd solutions for Stage 1(a) problems, computational

methods must be adopted in most cases. Most of the available numerical methods are for uncon-

strained conventional optimal control problems with �xed end-time can be used. See [17, 21] for

surveys of computational methods. Moreover, if all subsystems are linear and the cost functional is

quadratic in control and state, then the optimal control and optimal cost can be found by solving

a Riccati equation (see [14] for more details).

Stage 1(b)

In Stage 1(b), we need to solve the constrained nonlinear optimization problem (4.1) with

simple constraints. Computational methods for the solution of such problems are abundant in the

nonlinear optimization literature. For example, feasible direction methods and penalty function

methods are two commonly used classes of methods. These methods use the information of �rst-

order derivative @J1
@t̂

and even second-order derivative @2J1
@t̂2

. In the computation of the examples

in this paper, we use the gradient projection method (using @J1
@t̂
) and the constrained Newton's

method (using @J1
@t̂

and @2J1
@t̂2

) and their variations (see Section 2.3 in Bertsekas [3] for details).

For more discussions on various methods for solving constrained nonlinear optimization problems,

please also see [2, 19].

A Conceptual Algorithm

The following conceptual algorithm provides a framework for the optimization methodologies

in the subsequent chapters.

Algorithm 4.1 (A Conceptual Algorithm for Stage 1 Optimization)

(1). Set the iteration index j = 0. Choose an initial t̂j.

(2). By solving an optimal control problem (Stage 1(a)), �nd J1(t̂
j).

(3). Find @J1
@t̂
(t̂j) and @2J1

@t̂2
(t̂j).

(4). Use some feasible direction method to update t̂j to be t̂j+1 = t̂j +�jdt̂j (here the stepsize �j

is chosen using the Armijo's rule [3]). Set the iteration index j = j + 1.
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(5). Repeat Steps (2), (3), (4) and (5), until a prespeci�ed termination condition is satis�ed. 2

It should be pointed out that the key elements of the above algorithm are

(a). An optimal control algorithm for Step (2).

(b). The derivations of @J1
@t̂

and @2J1
@t̂2

for Step (3).

(c). A nonlinear optimization algorithm for Step (4).

In the above discussions, we have already addressed elements (a) and (c). (b) poses an obstacle

for the usage of Algorithm 4.1 because @J1
@t̂

and @2J1
@t̂2

are not readily available. It is the task of

the subsequent sections to address (b) and devise a method for the approximations of the values

of @J1
@t̂

and @2J1
@t̂2

. Lastly, it should be pointed out that in Step (4), when we are searching for �j ,

optimal control algorithm for Stage 1(a) will also be used in order to obtain the value of J1 at the

intermediate trial t̂'s.

5 Optimization for Stage 1 Problem Based on Direct Di�erentia-

tions

In the present section, we propose a method to approximate the values of @J1
@t̂

and @2J1
@t̂2

which can

be used in Stage 1(b) optimizations. The method is based on direct di�erentiations of the value

function. The approach is motivated by the approaches in [9, 10, 11]. Note that in this and next

sections, we assume Sf = R
n . See [31, 33] for early versions of the method.

For simplicity of notations, let us assume that we are given a Stage 1 problem where the number

of switchings is K and the order of active subsystems is 1; 2; � � � ;K;K + 1. We need to �nd an

optimal switching instant vector t̂ = (t1; � � � ; tK)
T and an optimal control input u.

Assume that we have a nominal t̂ = (t1; � � � ; tK)
T and a nominal control input u. If they are both

�xed, then the cost J will be a function of (x(t0); t0). However, if u is �xed and t̂ can be varied in a

small neighborhood of the nominal value, then the cost J will be a function of (x(t0); t0; t1; � � � ; tK).

Now let us assume that along with the small variations of t̂, u varies correspondingly in the following

manner. If t̂ varies to t̂+ dt̂, u varies correspondingly to

û(t) =

8><
>:

u(tk�) + (t� tk) _u
k�; if t 2 [tk; tk + dtk) for dtk � 0

u(tk+) + (t� tk) _u
k+; if t 2 [tk + dtk; tk] for dtk < 0;

u(t); else,

(5.1)

where _uk�
4
= du(tk�)

dt
and _uk+

4
= du(tk+)

dt
. We say that u assumes open-loop variations in this case.

By open-loop variations, we mean that u(t) only has variations in the interval between tk and

tk + dtk as shown in �gure 2. The reason why we call such variations \open-loop" will be clear in

Section 6.2 where we de�ne the so-called closed-loop variations. With the introduction of open-loop

variations in u, if we allow t̂ to vary in a small neighborhood of the nominal value, the cost J can

still be regarded as a function of (x(t0); t0; t1; � � � ; tK), since u in this case varies corresponding to

the variations of t̂. We denote such a cost as a value function

V 0(x(t0); t0; t1; � � � ; tK) =  (x(tf )) +

Z t1

t0

L(x; u; t) dt+ � � � +

Z tf

tK

L(x; u; t) dt (5.2)
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where the superscript 0 is to indicate that the starting time for evaluation is t0. Similarly, we can

de�ne the value function at the k-th switching instant as

V k(x(tk); tk; tk+1; � � � ; tK) =  (x(tf )) +

Z tk+1

tk

L(x; u; t) dt+ � � �+

Z tf

tK

L(x; u; t) dt: (5.3)

tk
(a)

tk tk dtk
+

}

(b)

dtk

.
uk -

(c)

} dtk

.
uk +

tktk dtk
+

tku( +)

tku( -)

Figure 2: The solid curves are u(t). (a). The nominal input u(t). (b). The open-loop variations of

u(t) induced by dtk � 0. (c). The open-loop variations of u(t) induced by dtk < 0.

The idea of the method is to approximate @J1
@t̂

and @2J1
@t̂2

by @V 0

@t̂
and @2V 0

@t̂2
, respectively. Here

we assume that for any given nominal t̂, we choose a nominal u which is an optimal solution to the

corresponding Stage 1(a) problem. From our experience with numerical examples, a suboptimal

solution would also suÆce to be the nominal u. In the followings, in order to make our presentation

clear, we denote @V
@x

for a function V as a row vector Vx,
@2V
@x2

as an n� n matrix Vxx and so on.

5.1 Single Switching

Let us �rst consider the case of a single switching. Assume that we are given a nominal t1, a

nominal u (u may be optimal or suboptimal) and the corresponding nominal state trajectory x.

We denote û(t) and x̂(t) to be the input and state trajectory after variation dt1 has taken place.

We write a function with a superscript 1� (resp. 1+) whenever it is evaluated at t1� and the

nominal values x(t1), u(t1�) (resp. t1+ and the nominal values x(t1), u(t1+)). Examples of

this notational convention are f1� = f1(x(t1); u(t1�); t1�), f
1+ = f2(x(t1); u(t1+); t1+), L

1� =

L(x(t1); u(t1�); t1�), L
1+ = L(x(t1); u(t1+); t1+), V

1+ = V 1(x(t1); t1+) (be careful to distinguish

V 1+ from V 1), etc.

It is not diÆcult to see that

V 0(x0; t0; t1) = V 1(x(t1); t1) +

Z t1

t0

L(x; u; t) dt: (5.4)

For a small variation dt1 of t1, we have

V 0(x0; t0; t1 + dt1)

= V 1(x̂(t1 + dt1); t1 + dt1) +

Z t1+dt1

t0

L(x̂; û; t) dt: (5.5)

The �rst term in (5.5) can be expanded into second order as

V 1(x̂(t1 + dt1); t1 + dt1)

= V 1+ + V 1+
x dx(t1) + V 1+

t1
dt1 +

1

2
(dx(t1))

TV 1+
xx dx(t1) +

1

2
V 1+
t1t1

dt21

+dt1V
1+
t1x
dx(t1) + (higher order terms) (5.6)
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where

dx(t1)
4
= x̂(t1 + dt1)� x(t1)

= f1�dt1 +
1

2
(f1�t + f1�x f1� + f1�u _u1�)dt21 + o(dt21): (5.7)

The second order expansion of the second term in (5.5) is derived as follows by distinguishing

the case of dt1 � 0 and the case of dt1 < 0. If dt1 � 0, we haveZ t1+dt1

t0

L(x̂; û; t) dt =

Z t1

t0

L(x; u; t) dt+

Z t1+dt1

t1

L(x̂; û; t) dt

=

Z t1

t0

L(x; u; t) dt+ L1�dt1 +
1

2
dt1L

1�
x dx(t1) +

1

2
dt1L

1�
u du(t1) +

1

2
L1�
t dt21

+(higher order terms): (5.8)

If dt1 < 0, we haveZ t1+dt1

t0

L(x̂; û; t) dt =

Z t1

t0

L(x; u; t) dt+

Z t1+dt1

t1

L(x; u; t) dt

=

Z t1

t0

L(x; u; t) dt+ L1�dt1 +
1

2
dt1L

1�
x dx(t1) +

1

2
dt1L

1�
u du(t1) +

1

2
L1�
t dt21

+(higher order terms) (5.9)

which has the same expression as (5.8) for dt1 � 0 although the derivation is slightly di�erent.

Note that in (5.8) and (5.9),

du(t1)
4
= û((t1 + dt1)�)� u(t1�) =

(
_u1�dt1; for dt1 � 0;

_u1�dt1 + o(dt1); for dt1 < 0:
(5.10)

Now substituting (5.7) and (5.10) into the expansions of the terms V 1(x̂(t1 + dt1); t1 + dt1),R t1+dt1
t0

L(x̂; û; t) dt and summing the two terms up, we obtain

V 0(x0; t0; t1)

= V 1+ +

Z t1

t0

L(x; u; t) dt+ V 1+
x dx(t1) + V 1+

t1
dt1 + L1�dt1

+
1

2
(dx(t1))

TV 1+
xx dx(t1) +

1

2
V 1+
t1t1

dt21 + dt1V
1+
t1x
dx(t1) +

1

2
dt1L

1�
x dx(t1)

+
1

2
dt1L

1�
u du(t1) +

1

2
L1�
t dt21 + o(dt21) (5.11)

= V 0(x0; t0; t1) + (V 1+
x f1� + V 1+

t1
+ L1�)dt1 +

1

2
[V 1+

x (f1�t + f1�x f1� + f1�u _u1�)

+(f1�)TV 1+
xx f

1� + V 1+
t1t1

+ 2V 1+
t1x
f1� + L1�

x f1� + L1�
u _u1� + L1�

t ]dt21 + o(dt21)

4
= V 0(x0; t0; t1) + V 0

t1
dt1 +

1

2
V 0
t1t1

dt21 + o(dt21) (5.12)

for all dt1 (no matter dt1 � 0 or dt1 < 0 we get the same expression).

Now let us consider V 1+ (i.e., V 1(x(t1); t1)) is the value function for �xed u(t), we have the

dynamic programming equation for the value function

V 1+
t1

= �V 1+
x f1+ � L1+: (5.13)
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Note that (5.13) can be derived similarly to the HJB equation. However, the di�erence between it

and the HJB equation is that (5.13) holds for any continuous input.

By di�erentiating (5.13), we obtain

V 1+
t1x

= �(f1+)TV 1+
xx � V 1+

x f1+x � L1+
x (5.14)

V 1+
t1t1

= �V 1+
t1x
f1+ � V 1+

x f1+t � L1+
t � (V 1+

x f1+u + L1+
u ) _u1+

= (f1+)TV 1+
xx f

1+ + (V 1+
x f1+x + L1+

x )f1+ � V 1+
x f1+t

�L1+
t � (V 1+

x f1+u + L1+
u ) _u1+: (5.15)

By substituting (5.13), (5.14) and (5.15) into (5.12), we can write V 0
t1
and V 0

t1t1
in the following

form

V 0
t1

= L1� � L1+ + V 1+
x (f1� � f1+); (5.16)

V 0
t1t1

= (f1� � f1+)TV 1+
xx (f1� � f1+)� (V 1+

x f1+x + L1+
x )(f1� � f1+)

+(V 1+
x (f1�x � f1+x ) + L1�

x � L1+
x )f1� + V 1+

x (f1�t � f1+t ) + L1�
t � L1+

t

+(V 1+
x f1�u + L1�

u ) _u1� � (V 1+
x f1+u + L1+

u ) _u1+: (5.17)

5.2 Two or More Switchings

In order to construct a second-order optimization algorithm, for switched systems with two or more

switchings, we need more information to derive the derivatives of V 0 with respect to the tk's. Let

us �rst consider the case of two switchings. Assume that a system switches from subsystem 1 to 2

at t1 and from subsystem 2 to 3 at t2 (t0 � t1 � t2 � tf ). The value function then is

V 0(x0; t0; t1; t2) = V 1(x(t1); t1) +

Z t1

t0

L(x; u; t) dt (5.18)

= V 2(x(t2); t2) +

Z t2

t0

L(x; u; t) dt: (5.19)

Using (5.18), by holding t2 �xed, V
0
t1
, V 0

t1t1
can be derived similarly to Section 5.1. In the same

manner, V 0
t2
, V 0

t2t2
can also be derived using (5.19). However, we need additional information to

derive V 0
t1t2

. Arguments from the calculus of variations will be used in the followings to derive V 0
t1t2

.

Now let us de�ne the important notion of incremental change which will be used in our following

derivations.

De�nition 5.1 (Incremental Change) Given any variations dt1 and dt2, we de�ne

Æx(t);minft1; t1 + dt1g � t � maxft2; t2 + dt2g to be the incremental change of the state

due to dt1 and dt2. In detail, it is de�ned as follows (see �gure 3).

Case 1: dt1 � 0; dt2 � 0 (see �gure 3(a)). In this case, Æx(t) is de�ned to be

Æx(t) =

8><
>:

x̂(t)� x(t); t 2 [t1 + dt1; t2]

y1(t)� x(t); t 2 [t1; t1 + dt1]

x̂(t)� z1(t); t 2 [t2; t2 + dt2]

(5.20)

where y1(t) is the solution of(
_y1(t) = f2(y1(t); u(t); t); t 2 [t1; t1 + dt1]

y1(t1 + dt1) = x̂(t1 + dt1)
(5.21)
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t2t1 1 1t dt+

δx( )t dt2 2
+

x(t)

2 2t dt+

t1δx( )
δx(t)

t2δx( )δx( )t dt1 1
+

y1(t) x^(t)

z1(t)

(a). 1dt ≥ 0, 2dt ≥ 0. 

t2t1 1 1t dt+

δx( )t dt2 2
+

x(t)

2 2t dt+

t1δx( )
δx(t)

t2δx( )

δx( )t dt1 1
+

y2(t) x^(t) z2(t)

(b). 1dt ≥ 0, 2dt < 0. 

t2
t11 1t dt+

δx( )t dt2 2
+

x(t)

2 2t dt+

t1δx( )
δx(t)

t2δx( )
δx( )t dt1 1

+
y3(t)

x^(t)

z3(t)

(c). 1dt < 0, 2dt ≥ 0. 

t2t11 1t dt+

δx( )t dt2 2
+

x(t)

2 2t dt+

t1δx( )
δx(t) t2δx( )

δx( )t dt1 1
+

y4(t)

x^(t)
z4(t)

(d). 1dt < 0, 2dt < 0. 

Figure 3: The incremental change Æx(t) for (a). dt1 � 0, dt2 � 0; (b). dt1 � 0, dt2 < 0; (c).

dt1 < 0, dt2 � 0; (d). dt1 < 0, dt2 < 0.

and z1(t) is the solution of(
_z1(t) = f2(z1(t); û(t); t); t 2 [t2; t2 + dt2]

z1(t2) = x(t2):
(5.22)

Case 2: dt1 � 0; dt2 < 0 (see �gure 3(b).) In this case, Æx(t) is de�ned to be

Æx(t) =

8><
>:

x̂(t)� x(t); t 2 [t1 + dt1; t2 + dt2]

y2(t)� x(t); t 2 [t1; t1 + dt1]

z2(t)� x(t); t 2 [t2 + dt2; t2]

(5.23)

where y2(t) is the solution of

(
_y2(t) = f2(y2(t); u(t); t); t 2 [t1; t1 + dt1]

y2(t1 + dt1) = x̂(t1 + dt1)
(5.24)

and z2(t) is the solution of(
_z2(t) = f2(z2(t); u(t); t); t 2 [t2 + dt2; t2]

z2(t2 + dt2) = x̂(t2 + dt2):
(5.25)

Case 3: dt1 < 0; dt2 � 0 (see �gure 3(c).) In this case, Æx(t) is de�ned to be

Æx(t) =

8><
>:

x̂(t)� x(t); t 2 [t1; t2]

x̂(t)� y3(t); t 2 [t1 + dt1; t1]

x̂(t)� z3(t); t 2 [t2; t2 + dt2]

(5.26)

13



where y3(t) is the solution of(
_y3(t) = f2(y3(t); û(t); t); t 2 [t1 + dt1; t1]

y3(t1) = x(t1)
(5.27)

and z3(t) is the solution of(
_z3(t) = f2(z3(t); û(t); t); t 2 [t2; t2 + dt2]

z3(t2) = x(t2):
(5.28)

Case 4: dt1 < 0; dt2 < 0 (see �gure 3(d).) In this case, Æx(t) is de�ned to be

Æx(t) =

8><
>:

x̂(t)� x(t); t 2 [t1; t2 + dt2]

x̂(t)� y4(t); t 2 [t1 + dt1; t1]

z4(t)� x(t); t 2 [t2 + dt2; t2]

(5.29)

where y4(t) is the solution of(
_y4(t) = f2(y4(t); û(t); t); t 2 [t1 + dt1; t1]

y4(t1) = x(t1)
(5.30)

and z4(t) is the solution of(
_z4(t) = f2(z4(t); u(t); t); t 2 [t2 + dt2; t2]

z4(t2 + dt2) = x̂(t2 + dt2):
(5.31)

2

Remark 5.1 In plain words, Æx(t) de�nes the di�erence between x̂(t) and x(t) in the time interval

where subsystem 2 is active. Moreover, by extending the trajectories x̂ and x under subsystem 2

dynamics to the time interval minft1; t1 + dt1g � t � maxft2; t2 + dt2g where at least one of x̂(t)

and x(t) evolves along subsystem 2, Æx(t) even de�nes the di�erence for this time interval. 2

In the followings, let us derive the expressions of Æx(t2) and dx(t2). The following important

Lemma will be used frequently in the proofs of the lemmas in this section (for details see Appendix).

Lemma 5.1 ([22]) Let g(t; u) be a real continuous function of the pair of variables t 2 (a; b),

u 2 U and let u(t), a < t < b, be a piecewise continuous function with values in U . If � is a point

in (a; b), we have Z �+q�

�+p�
g(t; u(t)) dt = �(q � p)g(�; u(�)) + o(�): (5.32)

Here p and q are arbitrary real numbers, � is a suÆciently small positive number, and o(�) is an

in�nitesimal of higher order than �, i.e., lim�!0
o(�)
�

= 0. 2

Remark 5.2 In [22], Lemma 5.1 is said to hold for any measurable function u. Here for our

purpose in this paper, we restrict u to be piecewise continuous functions. 2
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Lemma 5.2 The expressions of Æx(t2) and Æx(t2 + dt2) are as follows

Æx(t2) = A(t2; t1)(f
1� � f1+)dt1 + o(dt1); (5.33)

Æx(t2 + dt2) = A(t2; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2

+(other terms in dt21; dt
2
2 and higher order terms); (5.34)

where A(t2; t1) is the state transition matrix for the variational time-varying equation

_y(t) =
@f(x(t); u(t); t)

@x
y(t) (5.35)

for y(t); t 2 [t1; t2]; in (5.35), f is the corresponding active subsystem vector �eld (here it is f2) in

[t1; t2] and u, x are the current nominal input and state.

Proof: See Appendix. 2

In fact, from the proof of Lemma 5.2 (see Appendix), we can observe that Æx(t) = A(t; t1)Æx(t1)

for any t 2 [minft1; t1+dt1g;maxft2; t2+dt2g]. The following important principle can be obtained

directly from this observation. We refer to it as the forward decoupling principle in the subsequent

discussions. It reveals some intrinsic relationship among di�erent switching instants.

The Forward Decoupling Principle: If u assumes open-loop variations, then

(a). The value of the incremental change Æx(t1) at t1 will not be depending on dt2.

(b). The value of the incremental change Æx(t2) at t2 will be depending on dt2. 2

The forward decoupling principle tells us that a variation of an earlier switching instant will a�ect

the value of the incremental change at a later switching instant, but not vice versa.

Lemma 5.3 The expression of dx(t2) is

dx(t2) = A(t1; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2 + f2�dt2

+(other terms in dt21; dt
2
2 and higher order terms): (5.36)

Proof: The proof follows directly from the fact that

dx(t2) = Æx(t2 + dt2) + f2(x(t2); u(t2�); t2)dt2

+(other terms in dt21; dt
2
2 and higher order terms): (5.37)

for all four cases of the signs of dt1, dt2. 2

Remark 5.3 It is very important to point out that in the expression of dx(t2), we deliberately

express the term f2�x A(t2; t1)(f
1��f1+)dt1dt2 explicitly because it will contribute the the coeÆcient

of dt1dt2 as can be seen from the discussions below. 2
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Now that we have the expressions for Æx(t2), Æx(t2+dt2) and dx(t2), we are ready to derive the

coeÆcient for dt1dt2 in the expansion of

V 0(x0; t0; t1 + dt1; t2 + dt2) = V 2(x̂(t2 + dt2); t2 + dt2) +

Z t2+dt2

t0

L(x̂(t); û(t); t) dt: (5.38)

There are two terms in (5.38). Let us look at their Taylor expansions one by one in order to

�nd each term's contribution to the coeÆcient of dt1dt2.

Similar to the single switching case, the Taylor expansions of the �rst term is

V 2(x̂(t2 + dt2); t2 + dt2)

= V 2+ + V 2+
x dx(t2) + V 2+

t2
dt2 +

1

2
(dx(t2))

TV 2+
xx dx(t2) +

1

2
V 2+
t2t2

dt22 + dt2V
2+
t2x
dx(t2) + o(dt22): (5.39)

In (5.39), all those terms that will possibly contribute to the coeÆcient of dt1dt2 are those terms

containing dx(t2). They are

V 2+
x dx(t2);

1

2
(dx(t2))

TV 2+
xx dx(t2); dt2V

2+
t2x
dx(t2): (5.40)

Substituting the expression of dx(t2) into (5.40) and summing them, we obtain the contribution of

the �rst term to the coeÆcient of dt1dt2 as

[V 2+
x f2�x + (f2�)TV 2+

xx + V 2+
t2x

]A(t2; t1)(f
1� � f1+): (5.41)

For the second term, we have the following Lemma.

Lemma 5.4 The contribution of
R t2+dt2
t0

L(x̂; û; t) dt to the coeÆcient of dt1dt2 is

L2�
x A(t2; t1)(f

1� � f1+): (5.42)

Proof: See Appendix. 2

Remark 5.4 The above results still holds even when t1 = t2 (we can consider t2 > t1 �rst and

then let t2 ! t1 to prove this). 2

Combining (5.41) and (5.42) and the expression of V 2+
t2x

which can be similarly derived as V 1+
t1x

(see 5.14), we conclude that the coeÆcient of dt1dt2 (i.e., V 0
t1t2 in the expansion of V 0(x0; t0; t1 +

dt1; t2 + dt2) is

V 0
t1t2

= [V 2+
x f2�x + (f2�)TV 2+

xx + V 2+
t2x

+ L2�
x ]A(t2; t1)(f

1� � f1+)

= [V 2+
x (f2�x � f2+x ) + (f2� � f2+)TV 2+

xx + L2�
x � L2+

x ]A(t2; t1)(f
1� � f1+): (5.43)

The above result can also be similarly extended to the case of K switchings to relate Æx(tl)

and dtk (k < l). The expression for V 0
tktl

can similarly be obtained. We summarize and extend the

results obtained in this section into the following theorem.
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Theorem 5.1 For a switched system with K switchings,

V 0(x0; t0; t1 + dt1; t2 + dt2; � � � ; tK + dtK)

= V 0(x0; t0; t1; t2; � � � ; tK) +
KX
k=1

V 0
tk
dtk +

1

2

KX
k=1

V 0
tktk

dt2k +
X

1�k<l�K

V 0
tktl
dtkdtl

+(higher order terms) (5.44)

where

V 0
tk

= Lk� � Lk+ + V k+
x (fk� � fk+); (5.45)

V 0
tktk

= (fk� � fk+)TV k+
xx (fk� � fk+)� (V k+

x fk+x + Lk+
x )(fk� � fk+)

+(V k+
x (fk�x � fk+x ) + Lk�

x � Lk+
x )fk� + V k+

x (fk�t � fk+t )

+Lk�
t � Lk+

t + (V k+
x fk�u + Lk�

u ) _uk� � (V k+
x fk+u + Lk+

u ) _uk+; (5.46)

V 0
tktl

= [V l+
x (f l�x � f l+x ) + (f l� � f l+)TV l+

xx

+Ll�
x � Ll+

x ]A(tl; tk)(f
k� � fk+): (5.47)

2

5.3 The Implementation of the Algorithm

Once the values of @V 0

@t̂
and @2V 0

@t̂2
are obtained as approximations to @J1

@t̂
and @2J1

@t̂2
, the following

Algorithm which is a modi�ed version of the conceptual Algorithm 4.1 can be used for Stage 1

optimization.

Algorithm 5.1 (An Algorithm for Stage 1 Optimization)

(1). Set the iteration index j = 0. Choose an initial t̂j.

(2). By solving an optimal control problem for the current t̂j (Stage 1(a)), �nd the corresponding

optimal or suboptimal control input uj.

(3). For the current t̂j and its corresponding uj , supposing that uj assumes open-loop variations,

�nd @V 0

@t̂
(t̂j) and @2V 0

@t̂2
(t̂j) as approximations to @J1

@t̂
and @2J1

@t̂2
.

(4). Use some feasible direction method to update t̂j � 0 to be t̂j+1 = t̂j+�jdt̂j. Set the iteration

index j = j + 1.

(5). Repeat Steps (2), (3), (4) and (5), until a prespeci�ed termination condition is satis�ed. 2

It should be pointed out that in order to compute @V 0

@t̂
(t̂j) and @2V 0

@t̂2
(t̂j) using the formulae

(5.45)-(5.47), we need to know the values of V k+
x , V k+

xx , _uk�, _uk+ and A(tl; tk). However, given

nominal t̂, u and x, these values are not readily available. In general, numerical methods need to

be used to approximate their values. These added numerical computations usually demands extra

computational e�ort. The numerical method we use is described in the followings.

Suppose that the current switching instant vector is t̂ = (t1; � � � ; tK)
T and the sequence of

active subsystems are subsystems 1; 2; � � � ;K;K + 1. We can use discrete-time optimal control
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algorithms (see e.g., [11]) for the discretized version of the continuous problem to �nd the Stage

1(a) solution. Our computation of V k+
x , V k+

xx , _uk�, _uk+ and A(tl; tk) will be based on the solution

of the discretized optimal control problem.

In order not to lose the state, control information at the switching instant, instead of discretizing

the whole range [t0; tf ] using the same discretization level h (in this case, a switching instant may

fail to be grid point), we discretize each interval [tk�1; tk] into N intervals of equal length hk. In

other words, for each [tk�1; tk] we specify a di�erent discretization level hk (hK+1 for [tK ; tf ]), hence

the total number of discretized intervals are (K + 1)N . In this way, we can write our discretized

system as

x(i+ 1) = f̂(x(i); u(i); i) (5.48)

=

8>>>>>><
>>>>>>:

x(i) + h1f1(x(i); u(i); ih1); 0 � i < N;

x(i) + h2f2(x(i); u(i); Nh1 + (i�N)h2); N � i < 2N;
...

x(i) + hK+1fK+1(x(i); u(i); N(h1 + h2 + � � �+ hK)

+(i�KN)hK+1); KN � i < (K + 1)N:

(5.49)

The corresponding discrete-time value function is

V (x(i); u(i); � � � ; u((K + 1)N); i) =  ̂(x((K + 1)N)) + �
(K+1)N�1
j=i L̂(x(j); u(j); j) (5.50)

where

 ̂(x((K + 1)N)) =  (x((K + 1)N)); (5.51)

L̂(x(i); u(i); i) =

8>>>>>><
>>>>>>:

h1L(x(i); u(i); ih1); 0 � i < N;

h2L(x(i); u(i); Nh1 + (i�N)h2); N � i < 2N;
...

hK+1L(x(i); u(i); N(h1 + h2 + � � �+ hK)

+(i�KN)hK+1); KN � i < (K + 1)N:

(5.52)

In the followings, we denote V (x(i); u(i); � � � ; u((K + 1)N); i) simply as V (i). It can be shown

that the value function for the discretized problem satis�es the following backward di�erence equa-

tions (They are actually the equations for the derivatives of the value function for discrete-time

optimal control problems stated in [11]).

Vx((K + 1)N) =  ̂x((K + 1)N); (5.53)

Vx(i) = Vx(i+ 1)f̂x(i) + L̂x(i): (5.54)

We can then approximate V k+
x by

V k+
x

�= Vx(kN): (5.55)

Therefore, V k+
x can be derived from solution of (5.53) and (5.54).

Di�erentiating (5.53) and (5.54). with respect to x, we obtain

Vxx((K + 1)N) =  ̂xx(x((K + 1)N)); (5.56)

Vxx(i) = f̂Tx (i)Vxx(i+ 1)f̂x(i) + Vx(i+ 1)f̂xx(i) + L̂xx(i): (5.57)
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In (5.57), f̂xx(i) is an n � n � n array whose (j1; j2; j3) element is
@2f̂j1

@xj2@xj3
and the notation

Vx(i+ 1)f̂xx(i) denotes an n� n matrix which has its (j2; j3)-th element as

�n
j1=1Vxj1 (i+ 1)

@2f̂j1
@xj2@xj3

: (5.58)

By solving (5.56) and (5.57) backwards in time, we can obtain Vxx(i). Then we can approximate

V k+
xx by

V k+
xx

�= Vxx(kN): (5.59)

Furthermore, we approximate _uk�, _uk+ by

_uk� =
f̂k(kN � 1)� f̂k(kN � 2)

hk
; (5.60)

_uk+ =
f̂k+1(kN + 2)� f̂k+1(kN + 1)

hk+1
: (5.61)

Finally, we derive the approximation for A(tl; tk). Note that A(tl; tk) is the state transition

matrix for

_y(t) =
@f(x; u; t)

@x
y(t): (5.62)

For k < l, the discretized version of (5.62) for t 2 [tk; tl] is

y(i+ 1) =

8>>>>>>>><
>>>>>>>>:

y(i) + hk+1
@fk+1

@x
(x(i); u(i); N(h1 + � � � + hk) + (i� kN)hk+1)y(i);

for kN � i < (k + 1)N;
...

y(i) + hl
@fl
@x
(x(i); u(i); N(h1 + � � �+ hl�1)

+(i� (l � 1)N)hl)y(i);

for (l � 1)N � i < lN:

(5.63)

Find the solution y(1)(i),� � � ,y(n)(i) corresponding to initial conditions

y(1)(kN) = e1; � � � ; y
(n)(kN) = en (5.64)

respectively, where ej is the unit column vector with all 0's except that the j-th element is 1,

j = 1; 2; � � � ; n. From linear systems theory, we observe that A(tl; tk) can be approximated by the

square matrix whose j-th column is y(j)(lN), i.e.

A(tl; tk) �= [y(1)(lN); � � � ; y(n)(lN)]: (5.65)

Having described the above numerical method, we note that for the special class of optimal

control problems which are called generalized switched linear quadratic (GSLQ) problems, the

method in Sections 5.1 and 5.2 can be modi�ed so that these values can be easily obtained. We

will elaborate on this in the next section.

19



6 General Switched Linear Quadratic Problems

In this section, we modify the approach in Section 5 and apply it to Stage 1 problem of the following

general switched linear quadratic (GSLQ) Problem 6.1. Using the modi�ed approach for this class

of problems, the implementation diÆculties mentioned at the end of Section 5.3 can be successfully

addressed.

Problem 6.1 (GSLQ Problem) Consider a switched system S = (D;F ;L) with linear subsys-

tems _x = Aix+ Biu; i 2 I. Given a �xed time interval [t0; tf ], �nd a continuous input u 2 U[t0;tf ]
and a switching sequence � 2 �[t0;tf ] such that the cost functional in general quadratic form

J =
1

2
x(tf )

TQfx(tf ) +Mfx(tf ) +Wf +

Z tf

t0

(
1

2
xTQx

+xTV u+
1

2
uTRu+Mx+Nu+W ) dt (6.1)

is minimized. Here t0, tf and x(t0) = x0 are given; Qf ;Mf ;Wf ; Q; V;R;M;N;W are matrices of

appropriate dimensions with Qf � 0, Q � 0 and R > 0. 2

6.1 Solution for a Single Linear System

Note that for the general quadratic control of a single linear system _x = Ax + Bu, we can use

the dynamic programming approach to obtain the following results (the method is similar to the

method for solving conventional linear quadratic regulator problem reported in, e.g., [7]).

The optimal value function is

V �(x; t) =
1

2
xTP (t)x+ S(t)x+ T (t) (6.2)

where P (t) = P T (t) and

� _P (t) = Q+ P (t)A+ATP (t)� (P (t)B + V )R�1(BTP (t) + V T ); (6.3)

� _S(t) = M + S(t)A� (N + S(t)B)R�1(BTP (t) + V T ); (6.4)

� _T (t) = W �
1

2
(N + S(t)B)R�1(BTST (t) +NT ): (6.5)

The optimal control is in the feedback form

u(x(t); t) = �K(t)x(t)�E(t) (6.6)

where

K(t) = R�1(BTP (t) + V T ); (6.7)

E(t) = R�1(BTST (t) +NT ): (6.8)

Remark 6.1 For a GSLQ Stage 1(a) problem, if we assume that subsystem (Ak; Bk) is active in

t 2 [tk�1; tk), the above results also hold except that (6.3)-(6.8) should be modi�ed by substituting

A and B with Ak and Bk in the time interval [tk�1; tk) (AK+1 and BK+1 in [tK ; tf ]). 2
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6.2 Modi�ed Method for GSLQ Problems

Now we modify the method developed in Section 5 so that it will suit better for Stage 1 optimization

for GSLQ problems and V k+
x , V k+

xx , _uk� and _uk+ can be obtained more easily without much extra

computational e�ort. Assume we are given nominal switching instants and the corresponding

nominal optimal continuous input u in feedback form (6.6). Unlike Section 5, here we choose the

nominal K(�) and E(�) rather than u(�) to assume open-loop variations. This can give us the


exibility of letting u vary as a function of x since here u depends on x (see (6.6)). Consequently

we have (compare with (5.14), (5.15))

V k+
tkx

= �(fk+)TV k+
xx � V k+

x fk+x � Lk+
x � (V k+

x fk+u + Lk+
u )uk+x ; (6.9)

V k+
tktk

= �V k+
tkx
fk+ � V k+

x fk+t � Lk+
t � (V k+

x fk+u + Lk+
u )uk+t

= (fk+)TV k+
xx f

k+ + (V k+
x fk+x + Lk+

x )fk+ � V k+
x fk+t � Lk+

t

+(V k+
x fk+u + Lk+

u )(uk+x fk+ � uk+t ): (6.10)

Note that the expressions V k+
tkx

and V k+
tktk

are di�erent from those in Section 5.1. Similar to the

derivation in Section 5.1, it can be shown that V 0
tk
is of the same form as in Theorem 5.1 and

V 0
tktk

= (fk� � fk+)TV k+
xx (fk� � fk+)� (V k+

x fk+x + Lk+
x )(fk� � fk+)

+(V k+
x (fk�x � fk+x ) + Lk�

x � Lk+
x )fk� + V k+

x (fk�t � fk+t ) + Lk�
t � Lk+

t

+(V k+
x fk�u + Lk�

u ) _uk� � (V k+
x fk+u + Lk+

u ) _uk+

�2(V k+
x fk+u + Lk+

u )uk+x (fk� � fk+); (6.11)

where

_uk� = uk�x fk� + uk�t ; (6.12)

_uk+ = uk+x fk+ + uk+t : (6.13)

V 0
tktl

can also be derived similarly to the derivation in Section 5.2 except for the di�erence

described below. Here we can substitute u(x(t); t) = �K(t)x(t) � E(t) into the system state

equation and the cost functional. Note that K and E assume open-loop variations and u is a

function of x; hence a variation Æx will cause a variation Æu = �K(t)Æx. Similar to the derivations

in Section 5.2, we can prove that the expression of Æx(tl + dtl) is

Æx(tl + dtl) = A(tl; tk)(f
k� � fk+)dtk + (f l�x + f l�u ul�x )A(tl; tk)(f

k� � fk+)dtkdtl

+(other terms in dt2k; dt
2
l and higher order terms); (6.14)

where A(tl; tk) is the state transition matrix for

Æ _x =
@f(x; u; t)

@x
Æx+

@f(x; u; t)

@u
Æu = (Ai(t) �Bi(t)K(t))Æx: (6.15)

Once we have the expression of Æx(tl + dtl), we can similarly obtain

dx(tl) = A(tl; tk)(f
k� � fk+)dtk + (f l�x + f l�u ul�x )A(tl; tk)(f

k� � fk+)dtkdtl + f l�dtl

+(other terms in dt2k; dt
2
l and higher order terms): (6.16)
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Moreover, similarly to the derivation in Section 5.2, we can derive the coeÆcient for dtkdtl in the

expansion of V 0(x0; t0; t1 + dt1; � � � ; tk + dtk; � � � ; tl + dtl; � � � ; tK + dtK) as

V 0
tktl

= [V l+
x (f l+x � f l�x ) + (f l� � f l+)TV l+

xx + (Ll�
x � Ll+

x )

+(Ll�
u u

l�
x � Ll+

u u
l+
x )]A(tl; tk)(f

k� � fk+): (6.17)

It can now be seen from the expressions of V 0
tk
, V 0

tktk
and V 0

tktl
that all terms necessary for the

evaluation of them are readily available. In this case,

V k+
x = xT (tk)P

k+ + Sk+; (6.18)

V k+
xx = P k+; (6.19)

_uk� = � _Kk�x(tk)�Kk�fk� � _Ek�; (6.20)

_uk+ = � _Kk+x(tk)�Kk+fk+ � _Ek+; (6.21)

uk�x = �Kk�; (6.22)

uk+x = �Kk+; (6.23)

ul�x = �K l�; (6.24)

ul+x = �K l+; (6.25)

where x; P; S are continuous at tk; _Kk�, _Kk+, _Ek�, _Ek+ are functions of P; S obtainable by sub-

stituting the expressions of _P and _S into the di�erentiation of (6.7) and (6.8). The advantage of

applying the approach to GSLQ problems is that here V k+
x , V k+

xx , _uk� and _uk+ can be obtained

easily without resorting to extra computational methods. A(tl; tk) is the state transition matrix

from tk to tl for the time varying linear system

_y(t) = (Ai(t) �Bi(t)K(t))y(t) (6.26)

which can be calculated by numerical integrations as described at the end of Section 5.3.

Now that we have the expressions for V 0
tk
, V 0

tktk
and V 0

tktl
, we can use Algorithm 5.1 except that

Step (3) should be revised as \suppose K and E assumes open-loop variations".

Remark 6.2 It should be pointed out that only closed-loop variations for u can give us the con-

venience of computing V k+
x , V k+

xx , _uk� and _uk+. If open-loop variations for u is adopted, the

relationship V (x; t) = 1
2x

TP (t)x + S(t)x + T (t) is no longer true; hence (6.18)-(6.25) cannot be

obtained. In such a case, extra computational e�ort must be spent to �nd approximations for the

required values. 2

7 Some Examples

In this section, we illustrate the e�ectiveness of the approach developed in this section using sev-

eral examples. The �rst two examples use the method derived in Section 5 and the numerical

implementation described in Section 5.3.

Example 7.1 Consider a switched system consisting of

subsystem 1: _x = x+ 2xu; (7.1)

subsystem 2: _x = �x� 3xu: (7.2)
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Assume that t0 = 0, tf = 2 and the system switches once at t = t1 (0 � t1 � 2) from subsystem 1

to 2. We want to �nd an optimal switching instant t1 and an optimal input u such that the cost

functional J = 1
2(x(2) � 1)2 + 1

2

R 2
0 u

2(t) dt is minimized. Here x(0) = 1.

For this problem, we choose an initial nominal t1 = 1:2. By using Algorithm 5.1 with the

gradient projection method, after 40 iterations we �nd that the optimal switching instant is t1 =

1:0013 and the corresponding optimal cost is 1:3393�10�10 . The corresponding continuous control

and state trajectory are shown in Figure 4 (a) and (b). Note that the theoretical optimal solutions

for this problem are topt1 = 1, uopt � 0 and Jopt = 0, so the result we obtain is quite accurate.

Figure 5 shows the optimal cost for di�erent t1's. 2

1
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Figure 4: Example 7.1: (a) The control input. (b) The state trajectory x(t).
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Figure 5: The optimal cost for Example 7.1 for di�erent t1's.

Example 7.2 Consider a switched system consisting of

subsystem 1:

(
_x1 = �x1 + 2x1u

_x2 = x2 + x2u
(7.3)

subsystem 2:

(
_x1 = x1 � 3x1u

_x2 = 2x2 � 2x2u
(7.4)

subsystem 3:

(
_x1 = 2x1 + x1u

_x2 = �x2 + 3x2u
(7.5)
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Assume that t0 = 0, tf = 3 and the system switches at t = t1 from subsystem 1 to 2 and at t = t2

from subsystem 2 to 3 (0 � t1 � t2 � 3). We want to �nd optimal switching instants t1, t2 and an

optimal input u such that the cost functional J = 1
2(x1(3) � e2)2 + 1

2(x2(3) � e2)2 + 1
2

R 3
0 u

2(t) dt

is minimized. Here x1(0) = 1 and x2(0) = 1.

For this problem, we choose initial nominal t1 = 1:1, t2 = 2:1. By using Algorithm 5.1 with the

constrained Newton's method, after 20 iterations we �nd that the optimal switching instants are

t1 = 0:9914, t2 = 2:0140 and the corresponding optimal cost is 2:6919 � 10�4. The corresponding

continuous control and state trajectory are shown in Figure 6 (a) and (b). Note that the theoretical

optimal solutions for this problem are topt1 = 1, topt2 = 2, uopt � 0 and Jopt = 0. 2
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Figure 6: Example 7.2: (a) The control input. (b) The state trajectory.

In the following three examples, we applied the modi�ed method for GSLQ problems.

Example 7.3 Consider a switched system consisting of

subsystem 1: _x =

"
2 0

0 �1

#
x+

"
1

1

#
u; (7.6)

subsystem 2: _x =

"
�1 0

0 2

#
x+

"
1

1

#
u: (7.7)

Assume that t0 = 0, tf = 2 and the system switches once at t = t1 (0 � t1 � 2) from subsystem 1

to 2. We want to �nd an optimal switching instant t1 and an optimal input u such that the cost

functional J = 1
2

R 2
0 u

2(t) dt is minimized. Here x(0) = [1; 1]T and x(2) is required to be close to

[e; e]T .

For this GSLQ problem, we adjoin a penalty term 1
2 [(x1(2)� e)2 + (x2(2)� e)2] to J and then

consider the expanded cost functional Jexp. We use the modi�ed method for GSLQ problems to

obtain approximations to dJ1
dt1

. From an initial nominal t1 = 1:5, by using Algorithm 5.1 with

the gradient projection method, after 6 iterations we �nd that the optimal switching instant is

t1 = 0:9998 and the corresponding optimal cost is 1:3458 � 10�5. The corresponding continuous

control and state trajectory are shown in �gure 7 (a) and (b). Note that the theoretical optimal

solutions for this problem are topt1 = 1, uopt � 0 and Joptexp = 0. Figure 8 shows the optimal cost for

di�erent t1's. 2
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Figure 7: Example 7.3: (a) The control input. (b) The state trajectory.
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Figure 8: The optimal cost for Example 7.3 for di�erent t1's.

Example 7.4 Consider a switched system consisting of

subsystem 1: _x =

"
0:6 1:2

�0:8 3:4

#
x+

"
1

1

#
u; (7.8)

subsystem 2: _x =

"
4 3

�1 0

#
x+

"
2

�1

#
u: (7.9)

Assume that t0 = 0, tf = 2 and the system switches once at t = t1 (0 � t1 � 2) from subsystem 1

to 2. We want to �nd an optimal switching instant t1 and an optimal input u such that the cost

functional

J =
1

2
(x1(2)� 4)2 +

1

2
(x2(2)� 2)2 +

1

2

Z 2

0
(x2(t)� 2)2 + u2(t) dt (7.10)

is minimized. Here x(0) = [0; 2]T .

For this GSLQ problem, we can use the modi�ed method for GSLQ problems to obtain ap-

proximations to dJ1
dt1

. From an initial nominal t1 = 1:0, by using Algorithm 5.1 with the gradient

projection method, after 13 iterations we �nd that the optimal switching instant is t1 = 0:1897

and the corresponding optimal cost is 9:7667. The corresponding continuous control and state

trajectory are shown in �gure 9 (a) and (b). Figure 10 shows the optimal cost for di�erent t1's. 2
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Figure 9: Example 7.4: (a) The control input. (b) The state trajectory.
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Figure 10: The optimal cost for Example 7.4 for di�erent t1's.

Example 7.5 Consider a switched system consisting of

subsystem 1: _x =

"
�2 0

0 �1

#
x+

"
1

0

#
u; (7.11)

subsystem 2: _x =

"
0:5 5:3

�5:3 0:5

#
x+

"
1

�1

#
u; (7.12)

subsystem 3: _x =

"
1 0

0 1:5

#
x+

"
0

1

#
u: (7.13)

Assume that t0 = 0, tf = 3 and the system switches at t = t1 from subsystem 1 to 2 and at t = t2

from subsystem 2 to 3 (0 � t1 � t2 � 3). We want to �nd optimal switching instants t1; t2 and an

optimal input u such that the cost functional J = 1
2

R 3
0 u

2(t) dt is minimized. Here x(0) = [4; 4]T

and x(3) is required to be close to [�4:1437; 9:3569]T .

For this problem, we adjoin a penalty term [(x1(3)+4:1437)2+(x2(3)�9:3569)2 ] to J and then

consider the expanded cost functional Jexp. We can use the modi�ed method for GSLQ problems

to obtain approximations to @J1
@t̂

and @2J1
@t̂2

. From initial nominal values t1 = 0:8, t2 = 1:8, by using

Algorithm 5.1 with the constrained Newton's method, after 43 iterations we �nd that the optimal

switching instant is t1 = 1:0002, t2 = 2:0008 and the corresponding optimal cost is 6:3146 � 10�5.

The corresponding continuous control and state trajectory are shown in �gure 11 (a) and (b). Note
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that the theoretical optimal solutions for this problem are topt1 = 1, topt2 = 2, uopt � 0 and Joptexp = 0,

so the result we obtained is quite accurate. Figure 12 shows the optimal cost for di�erent t1 < t2.
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Figure 11: Example 7.5: (a) The control input. (b) The state trajectory.
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Figure 12: The optimal cost for Example 7.5 for di�erent (t1; t2)'s (0 � t1 � t2 � 3).

It can be observed from �gure 12 that the function J1(t1; t2) has several ripples. Hence it is not

convex even for this simple GSLQ problem; that is why such problems pose signi�cant diÆculties.

8 Conclusion

In this paper, we formulated an optimal control problem of switched systems and proposed a two

stage optimization methodology for it. Then we focused on Stage 1 optimization problems which

can further be decomposed into Stage 1(a) and Stage 1(b). We proposed a method to obtain

approximations of the values of the derivatives that are necessary for Stage 1(b) optimizations.

The method is based on direct di�erentiations of value functions (Theorem 5.1). In particular, a

modi�ed version of the method was proposed for general switched linear quadratic (GSLQ) problems

which can successfully address some of the implementation diÆculties of the method. Note that

earlier results of this paper have appeared in [32, 31, 33] and a more complete version can be found
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in [30]. There are many further research topics that are worth exploring since this paper is only a

�rst attempt to solve optimal control problems for switched systems. They include the development

of numerical methods for deriving accurate values of @J1
@t̂
, @2J1

@t̂2
; development of methods for Stage

1 optimization for systems with state and control constraints; explorations of the properties of the

function J1(t̂); etc. We will report progresses in these topics in our future papers.

Appendix: Some Proofs

Proof of Lemma 5.2: Although the results in the Lemma hold for all cases in the de�nition of

Æx(t), we need to discuss each case in order to show the validity of them.

Case 1: dt1 � 0, dt2 < 0.

Æx(t1 + dt1) =

Z t1+dt1

t1

f1(x̂(t); û(t); t) dt�

Z t1+dt1

t1

f2(x(t); u(t); t) dt: (A.1)

Using Lemma 5.1 (here we can let � = dt1, q = 1 and p = 0) and noting that x̂(t1) = x(t1),

û(t1) = u(t1�), we haveZ t1+dt1

t1

f1(x̂(t); û(t); t) dt = f1(x̂(t1); û(t1); t1)dt1 + o(dt1)

= f1(x(t1); u(t1�); t1)dt1 + o(dt1)

= f1�dt1 + o(dt1): (A.2)

Using Lemma 5.1, we haveZ t1+dt1

t1

f2(x(t); u(t); t) dt = f2(x(t1); u(t1+); t1)dt1 + o(dt1)

= f1+dt1 + o(dt1) (A.3)

Hence Æx(t1 + dt1) = (f1�� f1+)dt1+ o(dt1) and we conclude from the property of the variational

equation that

Æx(t2) = A(t2; t1 + dt1)Æx(t1 + dt1) + o(dt1)

= [A(t2; t1) +At1dt1 + o(dt1)][(f
1� � f1+)dt1 + o(dt1)] + o(dt1)

= A(t2; t1)(f
1� � f1+)dt1 + o(dt1); (A.4)

Æx(t2 + dt2) = [x̂(t2) +

Z t2+dt2

t2

f2(x̂(t); û(t); t) dt]� [z1(t2) +

Z t2+dt2

t2

f2(z1(t); û(t); t) dt]

= Æx(t2) +

Z t2+dt2

t2

[f2(x̂(t); û(t); t) � f2(z1(t); û(t); t)] dt

= Æx(t2) + [f2(x̂(t2); u(t2�); t2)� f2(x(t2); u(t2�); t2)]dt2 + o(dt2)

= Æx(t2) + f2�x Æx(t2)dt2 + o(dt2)

= A(t2; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2

+(other terms in dt21; dt
2
2 and higher order terms): (A.5)

Case 2: dt1 � 0, dt2 < 0.
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The arguments for proving (A.4) in Case 1 can be applied in this case to show its validity. In

this case,

Æx(t2 + dt2) = z2(t2 + dt2)� x(t2 + dt2)

= [z2(t2) +

Z t2+dt2

t2

f2(z2(t); u(t); t) dt]� [x(t2) +

Z t2+dt2

t2

f2(x(t); u(t); t) dt]

= Æx(t2) +

Z t2+dt2

t2

[f2(z2(t); u(t); t) � f2(x(t); u(t); t)] dt

= Æx(t2) + [f2(z2(t2); u(t2�); t2)� f2(x(t2); u(t2�); t2)]dt2 + o(dt2)

= Æx(t2) + f2�x Æx(t2)dt2 + o(dt2)

= A(t2; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2

+(other terms in dt21; dt
2
2 and higher order terms): (A.6)

Case 3: dt1 < 0, dt2 � 0.

In this case, we have

Æx(t1) =

Z t1

t1+dt1

f2(x̂(t); û(t); t)dt�

Z t1

t1+dt1

f1(x(t); u(t); t)dt

= f2(x(t1 + dt1); u(t1+) + _u1+dt1; t1 + dt1)(�dt1)

�f1(x(t1 + dt1); u(t1 + dt1); t1 + dt1)(�dt1)

+o(dt1)

= f1(x(t1); u(t1�); t1)dt1 � f2(x(t1); u(t1+); t1)dt1 + o(dt1)

= (f1� � f1+)dt1 + o(dt1): (A.7)

In reaching the second to the last equations in (A.7), we use the relationship

x(t1 + dt1) = x(t1) + _x(t1�)dt1 + o(dt1); (A.8)

u(t1 + dt1) = u(t1�) + _u(t1�)dt1 + o(dt1); (A.9)

and the Taylor expressions of f2 and f1. Therefore, we have

Æx(t2) = A(t2; t1)Æx(t1) + o(dt1)

= A(t2; t1)(f
1� � f1+)dt1 + o(dt1) (A.10)

Æx(t2 + dt2) = [x̂(t2) +

Z t2+dt2

t2

f2(x̂(t); û(t); t) dt]

�[z3(t2) +

Z t2+dt2

t2

f2(z3(t); û(t); t) dt]

= Æx(t2) +

Z t2+dt2

t2

[f2(x̂(t); û(t); t)� f2(z3(t); û(t); t)] dt

= Æx(t2) + [f2(x̂(t2); u(t2�); t2)� f2(x(t2); u(t2�); t2)]dt2 + o(dt2)

= Æx(t2) + f2�x Æx(t2)dt2 + o(dt2)

= A(t2; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2

+(other terms in dt21; dt
2
2 and higher order terms): (A.11)
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Case 4: dt1 < 0, dt2 < 0.

The arguments for proving (A.10) in Case 3 can be applied in this case to show its validity. In

this case, we have

Æx(t2 + dt2) = [z4(t2) +

Z t2+dt2

t2

f2(z4(t); u(t); t) dt]

�[x(t2) +

Z t2+dt2

t2

f2(x(t); u(t); t) dt]

= Æx(t2) +

Z t2+dt2

t2

[f2(z4(t); u(t); t) � f2(x(t); u(t); t)] dt

= Æx(t2) + [f2(z4(t2); u(t2�); t2)� f2(x(t2); u(t2�); t2)]dt2 + o(dt2)

= Æx(t2) + f2�x Æx(t2)dt2 + o(dt2)

= A(t2; t1)(f
1� � f1+)dt1 + f2�x A(t2; t1)(f

1� � f1+)dt1dt2

+(other terms in dt21; dt
2
2 and higher order terms): (A.12)

2

Proof of Lemma 5.4: We �rst note thatZ t2+dt2

t

L(x̂; û; t)dt =

Z maxft1;t1+dt1g

t0

L(x̂; û; t)dt+

Z t2+dt2

maxft1;t1+dt1g
L(x+ Æx; û; t)dt: (A.13)

In the light of the forward decoupling principle, the �rst term in (A.13) will not depend on dt2;

therefore, it will not contribute to the coeÆcient of dt1dt2.

For the second term, we discuss as follows.

Case 1. dt2 > 0.

In this case, we haveZ t2+dt2

maxft1;t1+dt1g
L(x̂; û; t) dt =

Z t2

maxft1;t1+dt1g
L(x+ Æx; û; t) dt+

Z t2+dt2

t2

L(x̂; û; t) dt: (A.14)

The �rst term in (A.14) will not be contributing due to the reason that

Æx(t) = A(t; t1)(f
1� � f1+)dt1 + o(dt1); (A.15)

û(t) = u(t); (A.16)

for t 2 [t0;maxft1; t1 + dt1g) and therefore they are not depending on dt2.

The second term is shown to beZ t2+dt2

t2

L(x̂(t2); û(t); t) dt = L(x̂(t2); u(t2�); t2)dt2 + o(dt2)

= L(x(t2); u(t2�); t2)dt2 + L2�
x Æx(t2)dt2

+(other terms in dt2; dt
2
2 and terms higher than order 2). (A.17)

By substituting the expression of Æx(t2) into (A.17), we obtain the coeÆcient of dt1dt2 con-

tributed by this term as

L2�
x A(t2; t1)(f

1� � f1+): (A.18)
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Case 2. dt2 < 0.

In this case, since x(t) + Æx(t) = x̂(t) and û(t) = u(t), for t 2 [maxft1; t1 + dt1g; t2 + dt2], we

have Z t2+dt2

maxft1;t1+dt1g
L(x̂; û; t) dt =

Z t2+dt2

maxft1;t1+dt1g
L(x+ Æx; u; t) dt

=

Z t2

maxft1;t1+dt1g
L(x+ Æx; u; t) dt+

Z t2+dt2

t2

L(x+ Æx; u; t) dt: (A.19)

Similar to Case 1, the �rst term in (A.19) will not be contributing. The second term is shown

to be Z t2+dt2

t2

L(x+ Æx; u; t) dt = L(x(t2) + Æx(t2); u(t2�); t2)dt2 + o(dt2)

= L(x(t2); u(t2�); t2)dt2 + L2�
x Æx(t2)dt2

+(other terms in dt2; dt
2
2 and terms higher than order 2). (A.20)

Therefore, by substituting the expression of Æx(t2) into (A.20), we obtain the same coeÆcient

(A.18). 2
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